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Abstract. Machine learning techniques are utilised in several areas of as-

trophysical research today. This dissertation addresses the application of ML

techniques to two classes of problems in astrophysics, namely, the analysis of in-

dividual astronomical phenomena over time and the automated, simultaneous

analysis of thousands of objects in large optical sky surveys. Specifically inves-

tigated are (1) techniques to approximate the precise orbits of the satellites of

Jupiter and Saturn given Earth-based observations as well as (2) techniques to

quickly estimate the distances of quasars observed in the Sloan Digital Sky Sur-

vey. Learning methods considered include genetic algorithms, particle swarm

optimisation, artificial neural networks, and radial basis function networks.

This first part of this dissertation demonstrates that GAs and PSO can

both be efficiently used to model functions that are highly non-linear in several

dimensions. It is subsequently demonstrated in the second part that ANNs

and RBFNs can be used as effective predictors of spectroscopic redshift given

accurate photometry, especially in combination with other learning-based ap-

proaches described in the literature. Careful application of these and other

ML techniques to problems in astronomy and astrophysics will contribute to a

better understanding of stellar evolution, binary star systems, cosmology, and

the large-scale structure of the universe.
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CHAPTER 1

Introduction: Astrophysical and Astronomical

Applications

1.1. Motivation

1.1.1. Modelling Astrophysical Phenomena. One basic problem that has

always confronted astrophysicists is that of coming to understand the physical dy-

namics behind a set of astronomical observations over time, i.e., trying to learn

what causes the behaviour we see from our telescopes on Earth. On a superficial

level, however, we often observe behaviour that is at best indirectly related to the

actual dynamics of a system, or even seemingly counterintuitive. For example, we

might observe a single pulsating beam of light in the sky, progressing from bright

to very bright to dim to very bright, and so on: what we are actually seeing is two

stars of unequal magnitude rotating around each other in our line of sight, eclipsing

one another in turn as they progress.

Astrophysical modelling allows us to take theories of expected astrophysical

behaviour, and, combining them with order-of-magnitude estimates, apply them

to a particular phenomenon to determine whether our observations are consistent

with our expectations. When we understand precisely the physical behaviour in

an observed system (e.g., the simple orbit of a moon around a planet), we are able

to determine specific parameters of the system (say, the elements that completely

specify the moon’s orbit) by modelling on our observations.

1.1.2. Data Mining in Large Astronomical Sky Surveys. A newer prob-

lem beginning to confront astronomers is the need to analyse and make sense of

data obtained in large sky surveys such as the Sloan Digital Sky Survey (SDSS)

[47], the 2dF QSO Redshift Survey (2QZ), and the forthcoming Panoramic Survey

Telescope and Rapid Response System (Pan-STARRS) and Large Synoptic Survey

Telescope (LSST). Once in operation, these newer surveys will collect terabytes [45]

of data each night, orders of magnitude more than could be analysed by any team

using traditional techniques.

xi



xii 1. INTRODUCTION: ASTROPHYSICAL AND ASTRONOMICAL APPLICATIONS

In order to conduct useful science on these tera- and petascale survey databases,

more efficient and accurate data mining techniques are needed—especially those

that require little or no human intervention. As survey databases continue to grow

by orders of magnitude, our analysis techniques will have to keep pace, and machine

learning techniques are particularly well suited for the task.

1.2. Traditional vs. Learning-Based Approaches

Learning algorithms may be preferred for their accuracy, efficiency, and/or scal-

ability. For example, linear or quadratic polynomial fitting or nonlinear regression

may be straightforwardly used to model a system or estimate a relation,1 but can

often lead to “large systematic deviations” [42]. A nonlinear solution estimated

with a learning technique may be harder for humans to make sense of (as with

‘black box’ techniques), but can be arbitrarily more complex—and thus sometimes

arbitrarily more precise.

The traditional method of photometric redshift estimation before learning tech-

niques were introduced had been spectral energy distribution (SED) template-

fitting: a theoretical composite SED is developed by averaging the spectra of hun-

dreds or thousands of objects that are thought to be parametrically similar (e.g.,

high-z quasars, Seyfert galaxies, or Type Ia supernovae). Absorption and emission

lines are identified and shifted into place, and the resulting SED is then redshifted

to several values to form a set of templates [19]. Photometric measurements are

then compared to these templates, and a best-fit redshift is determined by min-

imisation over some chi-square distribution. Unfortunately, this method requires a

set of representative templates, and cannot be reasonably utilised for astronomical

objects that cannot be safely classified2 (e.g., quasars, which were until recently

not well understood, and which are difficult enough to distinguish from stars in

colour-colour space [31]).

Particularly useful also is the ability to adjust a learning algorithm to suit a

particular problem-specific need (say, for efficiency over accuracy, or for distributed

computation over an unknown number of systems), which is often not possible with

traditional statistical approaches.

1Cf. [43] and especially [21].

2Cf. [27]



1.3. PROJECT AIMS AND DISSERTATION STRUCTURE xiii

1.3. Project Aims and Dissertation Structure

The aims of this project are two-fold: we aim firstly to demonstrate the ap-

plicability of learning techniques to two subsets of current astrophysical problems,

and secondly to compare the advantages and disadvantages of each learning method

considered. It is hoped that interdisciplinary investigations such as this will help

further cooperation between those with domain-specific knowledge of astrophysical

problems and those with a grasp of the theoretical foundations of machine learning

techniques—a cooperation that is becoming increasingly important for the future

of astrophysical research.

This dissertation is divided into two parts: Part I considers astrophysical mod-

elling of orbiting satellites, and Part II considers the problem of photometric redshift

estimation of quasars. Within Part I, Chapter 2 deals with the fundamentals of or-

bital mechanics and the calculation of satellite position according to Kepler’s laws.

Chapter 3 discusses the genetic algorithm approach to this modelling problem, and

Chapter 4 compares this to an approach based on particle swarm optimisation. In

Part II, Chapter 5 presents the topic of redshift estimation of quasars. Chapters 6

and 7 discuss artificial neural networks and radial basis function networks as tech-

niques for redshift estimation and present analyses of the results, and Chapter 8 is

discussion. Finally, by way of conclusion, Chapter 9 elaborates on the implications

of this research and on possible future directions.





Part I

Astrophysical Modelling



CHAPTER 2

Background

2.1. The Orbits of the Satellites of Jupiter

The Galilean Satellites of Jupiter, so-called because of their discovery by Galileo

in 1610, were some of the first subjects of astrophysical modelling. Galileo could

not directly observe the four moons’ orbits around the planet, but he observed

their change in position around Jupiter over the course of a month (Figure 2.1).

From these observations he was able to induce an elementary theory about what

was causing the motions of the little ‘stars’: they were actually orbiting around the

major planet. This theory had implications that fit the observed evidence, and it

was deemed to be the most likely explanation for the phenomenon.

The problem undertaken here is, in principle, to determine all of the six orbital

elements [7, p. 58] that precisely describe the orbit of a given satellite around

Jupiter, using only observations available from telescopes on Earth. Given the well

defined Keplerian theory of celestial mechanics, this problem is essentially one of

function approximation in six dimensions. As such, it is similar in form to any other

classical modelling problem in astrophysics, and demonstrates the applicability of

learning techniques to the approximation of highly parametric models.

More immediately, however, this solution of approximating celestial orbits can

be used to study binary star systems, comets with highly eccentric orbits, and

planetary star systems, as well as astrodynamical problems such as optical or lossy

radar-based tracking of missiles and satellites.

2.2. Data

Accurate ephemerides (calculated positions of astronomical objects) are avail-

able from the HORIZONS System1 at NASA’s Jet Propulsion Laboratory. This

system was used to simulate observations of Jupiter and one of its moons from a

ground-based optical telescope at Oxford, England, over a period of 31 days, at

intervals of 2 hours. For simplicity, observations were simulated during daylight

1http://ssd.jpl.nasa.gov/?horizons

2



2.2. DATA 3

Figure 2.1. Galileo’s observations of Jupiter in Sidereus Nuncius.

From http://www.hps.cam.ac.uk/starry/galileo.html; image

courtesy of the Master and Fellows of Trinity College, Cambridge.

as well as at night. The data provided were in the form of right ascension (α)

and declination (δ) coordinates—references to an astronomical coordinate system

independent of the rotation of the Earth [7, p. 56].
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These two-dimensional coordinates essentially show the location of Jupiter and

one of its moons on an XY-plane, and, together with an arbitrary2 distance, are

sufficient to describe a satellite’s orbit precisely over time. However, in order to save

time and minimise computational rounding errors, we opted to use data describing

the relative location of a moon to Jupiter in three dimensions. While this is not just

a simple geometric transformation of two-dimensional data into three-space (it does

contain more information per se), the techniques should be similarly effective on

the 2-D data: they would simply take longer to converge in light of the additional

ambiguity.

We first used a test dataset with simple orbital elements to optimise the GA

and PSO parameters, and then we applied the techniques with these parameters to

actual satellite ephemerides.

2.3. Classical Orbital Elements

Six quantities [7, p. 58] are enough, using classical mechanics, to describe the

orbit of a satellite around a major body:

(1) a, semi-major axis, half the length of the longest line that can be drawn

across the orbital ellipse,

(2) e, eccentricity, varying from 0 (circular orbit) to nearly 1 (almost para-

bolic),

(3) i, inclination, the angle at which the orbital plane is removed from the

equatorial (fundamental) plane,

(4) Ω, longitude of the ascending node, the angle at which the satellite ‘as-

cends’ (in a northerly direction) across the equatorial plane measured

anticlockwise from the reference direction (γ, where α = 0◦) when viewed

from the north side of the major body,

(5) ω, argument of periapsis, the angle in the orbital plane between the as-

cending node and periapsis—the point at which the satellite is closest to

the major body, and

2Using only point coordinates in two-space, it is impossible to calculate certain orbital el-

ements and target distance simultaneously. The semi-major axis (see §2.3) of the moon’s orbit

would vary linearly with distance.
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Figure 2.2. Classical angular orbital elements. From

http://en.wikipedia.org/wiki/Orbital elements.

(6) Mepoch, mean anomaly at epoch,3 roughly the angle the satellite has trav-

elled about the centre of the major body at a predefined time epoch,4

measured anticlockwise from periapsis when viewed from the north.

See Figure 2.2 for an illustration of the angular elements. In the figure, true anomaly

ν can be thought of as representing mean anomaly at a given time M , although it

is calculated according to (2.2a).

3For comparison to mean orbital elements at http://ssd.jpl.nasa.gov/?sat elem#jupiter,

this approach deviates from [7]: Bate et al. (1971) refer instead to T , the time of periapsis

passage. Mepoch can be derived from T given the epoch, current time t, current mean anomaly

M , and ω.
4The term epoch is used because orbital relationships slowly deviate (precess) over time, and

an approximate time frame must therefore be specified.
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2.4. The Kepler Problem

The calculation of position in an orbit (in terms of the orbital elements de-

scribed in §2.3) as a function of time is known as the Kepler problem,5 as it requires

the solution of Kepler’s equation [7, pp. 185, 193]:

(2.1) M = Mepoch + n ·∆t = E − e · sin(E)

where n is the mean motion,6 ∆t7 is the time elapsed since the current epoch, E

is the eccentric anomaly [7, p. 183], another measure of progression in orbit, and

Mepoch and e are as above.

Beginning with hypothetical values of Mepoch, n, and ∆t that we want to test,

we approximate E (as described below), and then solve for the true anomaly ν and

distance ρ, simple polar coordinates representing the position of the satellite about

the orbital plane:

(2.2a) ν = 2 · arctan (

√
1 + e

1− e
· tan

E

2
)

(2.2b) ρ = a · 1− e2

1 + e · cos(ν)
.

From ν and ρ, a simple transformation into Cartesian coordinates in 3-space—where

the x-axis is aligned with the reference direction in the equatorial plane (α = 0◦),

the y-axis is positive at α = 90◦, and the z-axis is positive northwards—allows us

to compare our calculation with our ‘observational’ data.

As we cannot isolate the value of E in Kepler’s equation (it is ‘transcendental’

in E), we must use a numerical solution to approximate it. This we have done with

nine iterations (beginning with E0 = M) of Ei+1 = M + e · sin(Ei).8

5The term ‘Keplerian problem’ is occasionally used, where the Kepler

problem is taken to mean the two-body problem in classical mechanics; cf.

http://en.wikipedia.org/wiki/Keplerian problem.
6The mean motion is the average rate of progression of a satellite around its major body,p

µ/a3, where the standard gravitational parameter µ = GM , the gravitational constant times

the mass of the major body.

7We deviate from the presentation of Bate et al. (1971) again, for consistency with (6) above.

8http://en.wikipedia.org/wiki/Eccentric anomaly



CHAPTER 3

Genetic Algorithms for Astrophysical Modelling

3.1. Fundamentals of GAs

The inspiration for genetic algorithms (GAs) comes from the biological pro-

cesses of evolution and natural selection [30, p. 222]. In constructing a GA, one

first initialises a population of randomised organisms, each of which represents

the set of parameters one wants to approximate. The population is then evolved

through many generations wherein organisms are allowed to crossover with each

other, thereby creating offspring organisms that take parameters from both parent

organisms.

In each generation, given some definition of fitness, the healthier organisms

are (probabilistically) more likely to survive, allowing the overall population to

approach the desired characteristics. A fraction of organisms are mutated in each

generation as well, to reduce the likelihood of convergence on a local (rather than

global) minimum. A description of a standard GA is given in Table 3.1.

3.1.1. Advantages of GAs. As GAs are flexible and easily implemented,

they provide a straight-forward solution to the modelling problem presented here.

Simple modification of the fitness function would allow us to encourage the GA to

converge on some orbital elements more strictly than others, if desired; additionally,

incorporation of error margins into the fitness function would enable us to account

for measurement errors and systematic deviations in our observational training

data.1

Stochastic elements in the GA induce a “randomised, parallel beam search,”

[29, pp. 252, 259] which is important to keep in mind when approximating highly

nonlinear functions. In particular, although the GA is not immune to the problem

of local minima in the error function (equivalent to local maxima in the fitness func-

tion), it avoids some types of local minima that afflict particle swarm optimisation

(see Chapter 4), as its crossover behaviour tends to create hypotheses that are dras-

tically different from those in the existing population. We also discuss some simple

1This idea was suggested by Dr Daniel Reichart, Dept of Physics and Astronomy, UNC-CH.

7



8 3. GENETIC ALGORITHMS FOR ASTROPHYSICAL MODELLING

GA(Fitness, p, s, m)

Fitness: Function that calculates accuracy.

p: Size of the population.

s: Fraction of the population ‘selected’ between generations; others are replaced by

crossover.

m: Mutation rate.

Initialise: P ← Randomly generate p organisms.

Evaluate: For each o in P , find Fitness(o).

Create a new generation, PS:

(1) Select: Probabilistically select s · p members of P to add to PS . The

probability Pr(o) of selecting organism oi from P is

Pr(oi) =
Fitness(oi)Pp

j=1 Fitness(oj)
.

(2) Crossover: Probabilistically select (1−s)·p
2

pairs of organisms from P ac-

cording to Pr(oi) above. Crossover each pair, adding offspring to PS .

(3) Mutate: Choose m percent of the members of P with uniform probability,

randomly modifying their parameters slightly.

(4) Update: P ← PS .

(5) Evaluate: For each o in P , find Fitness(o).

(6) Repeat: Repeat if minimum fitness or generation threshold has not been

reached, or until manually halted.

Return: Output the organism o in P with the highest fitness.

Table 3.1. A canonical genetic algorithm. Adapted from Mitchell

(1997) [29, p. 251].

methods of parallelising GAs (§3.4.3), for example, for use on high-performance

computing clusters for terascale and larger astronomical applications.

3.2. Implementation of GAs

The GA was encoded2 and parameterised as follows.

3.2.1. Organisms and Population. An organism is simply a data structure

representation of the six orbital elements described in §2.3. Angular values are

represented in radians, distance is represented in metres (as a long long) and

long doubles3 are used whenever possible to minimise floating-point errors. Initial

2Both methods presented here were coded in C++ in a Windows
TM

environment, under

Microsoft R© Visual Studio 2008. See Appendix A for the relevant source.

3The data type long double is equivalent to double in our C++ implementation.
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values are selected uniformly at random from appropriate ranges, and population

sizes from 100 to 100,000 are tested.

3.2.2. Crossover and Mutation. Crossover is handled more stochastically

than in the canonical algorithmic implementation and is similar to a uniform

crossover [29, pp. 254-255]. First, from the pool of organisms that have been

selected from the previous generation, two are chosen uniformly at random with

replacement. A crossover probability c in the interval [0, 1] is defined (in our case as

0.25), and two children organisms are created such that they are identical copies of

their parents—except with the independent probability c that any of their orbital

elements have been swapped. That is, with probability c, the two children have

swapped their parents’ semi-major axis values, and with the same probability, they

have swapped their parents’ inclination values, and so on.

An overall mutation rate is defined (for us, mo = 0.15), and this percentage of

organisms may be mutated after crossover. With another independent probability

(again mi = 0.15), an individual orbital parameter is mutated: half of these are

multiplied by a double selected uniformly from [0.75, 1.25], and half of these are

completely randomised, as at initialisation. This technique allows some values to

be slightly adjusted after the population has begun to converge. Also, note that the

independent mutation rate for an individual parameter is (0.15)2 = 2.25%, and the

probability that one of the six parameters is changed is 1− (1−0.0225)6 = 12.76%,

a very high rate,4 which we have chosen in light of this problem’s rapid convergence

to local error minima and severe nonlinearities apparent in several dimensions.

3.2.3. Fitness. Fitness of an organism is determined by calculating the esti-

mated position of the satellite (given its hypothetical orbital elements) relative to

Jupiter at every time step ti for which there is an observational datum. The Eu-

clidean distance ∆p(i) between the satellite’s estimated position and its observed

position is calculated:

(3.1) ∆p(i) =
√

(xe(i)− xo(i))2 + (ye(i)− yo(i))2 + (ze(i)− zo(i))2

and the fitness of the organism is set to the inverse of this distance, 1
∆p(i) , averaged

over all time steps ti. Thus, organisms that predict satellite positions closer to the

relevant observations have higher fitness values, and all fitness values are in the set

R+.

4Cf. Mitchell (1997) [29, p. 256], who suggests 0.1%, and Negnevitsky (2002) [30, p. 226],

who suggests 0.1% to 1.0%.
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∆p Relative Fitness

p0 1/p0 ≡ fitness0

0.75 · p0 1.3 · fitness0

0.5 · p0 2 · fitness0

0.25 · p0 4 · fitness0

0.1 · p0 10 · fitness0

Table 3.2. Fitnesses associated with declining ∆p values.

3.2.4. Selection. Before crossover, a predefined percentage (called the re-

placement or selection rate) of organisms (we use s = 0.7) are probabilistically

selected according to their fitness values; specifically, an organism o has probability

(3.2) probselecto =
fitnesso∑

i∈unselected fitnessi

of being selected to persist in the next generation [29, p. 251], and this selection

is repeated from the original population (without replacement) until s · popSize

elements have been chosen. Note that, owing to the inverse linear relationship

established for fitness in §3.2.3, organisms with lower ∆p values are significantly

more likely to be selected between generations, creating a greedier algorithm, as

seen in Table 3.2.

3.2.5. Termination Conditions. One of the difficulties of using GAs and

PSO is that convergence to global minima in the error function is not guaranteed;

therefore predefined termination conditions are often difficult to set or even in-

appropriate, if the likelihood of convergence is not well understood. As such, no

automated termination conditions were imposed; the algorithm was halted at will

once useful data had been obtained (typically when 4·107 < popSize·generations <

8 · 107).

3.3. Results and Analysis

3.3.1. Artificial Dataset. We first tested our algorithm and observed con-

vergence rates on an artificial dataset with known orbital elements [a = 108, e =

0, i = π,Ω − (ω + Mepoch) ≡ 0 (mod 2π)] to decide which GA parameters to ap-

ply to our real data. To analyse the performance of our algorithm, we measured

best fitness, worst fitness, mean fitness µfitness, and standard deviation of fitness

σfitness over G generations as described in §3.2.5. We did not measure the mean
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Size Best Fitness ...at Gen. Total Gen’s Runtime per 105 Gen’s

100 4.78825e-05 40669 300000 396.23 s

1000 3.1155e-06 11715 40000 6002.8 s

10000 1.74912e-06 345 2000 150530 s

Table 3.3. GA performance on the artificial dataset. We use best

fitness at the final generation, as in the canonical GA presented in

Table 3.1, but we include the generation at which this fitness or

better was first achieved. Note that runtime is related to dataset

size.

Size a e i Ω− (ω +Mepoch)

100 99996000 0 3.14154 0.290308

1000 99983731 1.62e-06 3.14159 1.18074

10000 100021587 1.02e-04 3.1414 4.7178

Table 3.4. GA results on the artificial dataset.

and variance of each of the six orbital elements individually, as we were mainly con-

cerned with the relationship between fitness, µ, and σ in light of the termination

problem, not with the algorithm’s movement over our particular six-dimensional

search space.

We tested GAs with population sizes of 100, 1,000, 10,000, and 100,000, al-

though populations of 100,000 did not evolve sufficiently quickly on our hardware5

to be useful. A brief overview of best results achieved with these populations is

presented in Tables 3.3 and 3.4.

Although the GA with population size 100 achieved the best result, it was also

most susceptible to falling into local minima in the search space. Because the local

minima for this dataset are well known, GA runs that converged on local solutions

could be manually excluded. However, on a real dataset for which the search space is

poorly understood, these local minimum errors cannot be automatically corrected;

a GA approaching a local minimum is theoretically identical in behaviour to one

approaching the global minimum, as seen in Figures 3.1, 3.2, and 3.3. However,

the lower standard deviation in early generations (early convergence) on the poorer

5Most simulations were run on a 2 GHz Intel R© Core
TM

2 Duo processor with 2 GB RAM.
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Figure 3.1. Overall best fitness of two GAs of size 100 over

100,000 generations. The dashed-line GA has fallen into a local

error minimum.

GA in Figure 3.3 is possibly an indication of its having fallen into a local minimum,

judging qualitatively from similar plots such as Figure 3.4.

GAs with smaller populations have the advantage that their organisms evolve

more quickly and can therefore arrive at more ‘finely tuned’ solutions near the global

minimum without expensive computation time; however, they often fail to gener-

ate the early variation necessary to approach the global minimum. Accordingly,

we proceed primarily with GAs of size 1,000, as these were much less susceptible

to problems of premature convergence, yet still evolved quickly enough to yield

acceptably precise solutions.

3.3.2. Jupiter’s Moons: Io and Himalia. We first looked to Io, as one of

the four Galilean satellites with a stable, near-circular orbit. However, because most

moons with stable circular orbits have an inclination near 0, the dimensionality of

our search space for Io was reduced—or, rather, our algorithm had to explore a

very flat search space over the parameters Ω, ω, and Mepoch in the region of i = 0.

We were still able to converge on some of Io’s orbital parameters, as illustrated in
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Figure 3.2. µfitness of the two GAs in Figure 3.1. Mean fitness,

smoothed over 500 generations, tends to approximate the fitness

of the current (surviving) best organism.

Element GA Approximation Actual Value Error

a 421075000 421800000 0.00172

e 0.00555 0.0041 0.00145

i 9.68e-05 (0.036) (0.0057)

Table 3.5. Results on Io for a GA with population 1,000, af-

ter 15,000 generations. The actual inclination i is referred to the

Laplace plane, but for a large moon like Io this is roughly the same

as Jupiter’s equatorial plane.

Table 3.5, but for the others, the search area around the global minimum was too

flat for our algorithm to efficiently approach the correct values.

We then chose Himalia, a smaller moon with a more eccentric orbit and a sig-

nificant inclination. However, although our GA should have been able to converge

on more of the orbital elements of Himalia, it became apparent that we would not

be able to compare our estimated i, Ω, ω, or Mepoch values to real data: the values

of these parameters presented in the literature [24] for all of Jupiter’s moons are
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Figure 3.3. σfitness of the two GAs in Figure 3.1, smoothed over

500 generations.

referred to the Laplace plane,6 while our code was designed to calculate orbital ele-

ments referred to a planet’s equatorial plane. Moreover, it is impossible to translate

between Laplace plane values and equatorial ones without more information about

the precise orientation of a satellite’s orbit in a given epoch. Still, we present our

best converged values of a and e for Himalia in Table 3.6.

3.3.3. Saturn’s Moon: Atlas. The moons most similar to Jupiter’s with

data that can be referred to a planetary equatorial plane are those of Saturn. Ac-

cordingly, we chose one of Saturn’s major moons, Atlas, for a complete application

of our learning algorithms. Atlas, like all of Saturn’s inner satellites, has a low

inclination and so has a very flat search space in the region of the global minimum,

but we can at least compare our GA results to all six of its orbital elements. The

6The orbits of small satellites tend to precess more rapidly than those of larger satellites,

meaning that the pole of the satellite’s orbital plane moves gyroscopically about another pole—

the pole of its Laplace plane. The Laplace plane thus represents something of an ‘average’ orbital

plane if one integrates over the full precession period of a satellite’s orbit.
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Figure 3.4. σfitness of two GAs of size 1,000 over 80,000 genera-

tions. The dashed line describes a GA that has fallen into a local

minimum; note its low variance in early generations.

Element GA Approximation Actual Value Error

a 11315960111 11461000000 0.0127

e 0.100526 0.1623 0.0618

Table 3.6. GA results on Himalia with population 1,000, after

40,000 generations. Slightly better (2.8% gain in fitness) results

were achieved with a GA of size 100 after 200,000 generations,

although it suffered from the local minimum problem described in

§3.3.1.

orbits of Saturn’s smaller, outer satellites, being more inclined and eccentric, are

not measured in reference to the planet’s equatorial plane.7

The best solution for Atlas’s orbital elements found by our GA is presented in

Table 3.7. We see that the GA converged on very accurate values of a, e, and i,

but, as expected, was unable to effectively traverse the flat search area around the

global minimum with respect to the other three parameters.

7See http://ssd.jpl.nasa.gov/?sat elem#saturn.
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Element GA Approximation Actual Value Error

a 137450238 137670000 0.0127

e 4.275e-08 0.0012 0.0012

i 9.470e-08 0.003 0.0005

Ω 4.890 0.0087 0.777

ω 3.439 5.786 0.374

Mepoch 5.441 2.753 0.428

Table 3.7. GA results on Atlas with population 1,000, after

80,000 generations.

Figure 3.5 shows the overall best fitness over time along with the mean fitness

in the population and the standard deviation of fitness (after selection and before

and after crossover, µfitness and σfitness remain almost unchanged), where the

latter two values are smoothed over 1,000 generations. In the GA implementation,

the mean fitness of the population is nearly identical (when averaged over some

hundreds of generations) to the best fitness observed; the population does not

periodically decrease in fitness. Note that this does not mean that our algorithm

behaves greedily; it merely indicates that a single organism attaining a higher fitness

tends to bring a majority of the population up to its fitness level. This does not

in itself indicate convergence: the entire population may have the same fitness but

may still be dispersed about the search space. That increases in best fitness quickly

bring other organisms to higher fitness levels is also illustrated in Figure 3.6, where

the sharp rises and falls of σfitness are consistent with these shifts in fitness.

3.4. Discussion

3.4.1. Difficulties of Convergence. As discussed earlier, large moons tend

to orbit their major planets at very small inclination, such that i ∼ 0 (mod π). This

not only creates a relatively flat search space in the region of i = 0, but also induces

a dependent relationship between the three other angular orbital parameters. That

is, Ω, ω, and Mepoch will have higher fitness when they vary according to the

relation Ω + ω +Mepoch = t for some value t ∈ [0, 2π). This dependence effectively

disallows any significant movement in a single dimension; in order to approach

optimal values, organisms must either mutate by very small amounts in single

dimensions or must mutate in multiple dimensions simultaneously while roughly

obeying the given relation.
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Figure 3.5. Log plot of overall best fitness, µfitness (dashed

curve), and σfitness (dotted curve) of a size 1,000 GA running

on Atlas for 80,000 generations. For clarity, µfitness is transposed

downwards by a factor of 2.

As it is, this dependence tends to bring about convergence of Ω, ω, and Mepoch

in our implementation on parameter values that are insufficiently optimal. Once

convergence over these three parameters has occurred, it is very unlikely that the

GA will approach more optimal values for them.

3.4.2. Cross-Fertilisation of Populations. We have mentioned that smaller

populations can approach more optimal solutions in fixed computational time, al-

though larger populations are better suited to avoiding local minima in the search

space—particularly in early generations. One approach that could take advantage

of both of these strengths is that of cross-fertilisation:8

Multiple GAs could be run with completely distinct populations of differing

sizes, such that from time to time some organisms are migrated between popula-

tions. These organisms could be randomly chosen or could be selected by fitness

8Cf. Mitchell (1997) [29, p. 268], who discusses this in the context of parallelisation.
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Figure 3.6. Linear plot of the GA in Figure 3.5, overall best fit-

ness with σfitness. σfitness is smoothed over 1,000 generations, yet

still indicates great increases in fitness variance over the population

of 1,000 when the overall best fitness increases.

(for a greedier implementation), and they could move between all populations or

only from larger populations to smaller ones, to avoid local minima traps.

An attempt at mimicking this cross-fertilisation was made by seeding a GA

of size 100 with a, e, and i values found by the size-1,000 GA (as though cross-

fertilising the smaller population with the most fit organism from the larger pop-

ulation), as listed in Table 3.8. This placed the 100 new organisms in the region

of the global minimum, and allowed them to explore the search space over 100,000

additional generations. Fitness improved by 18.8% (not an order of magnitude

increase), and although the smaller GA still converged relatively quickly on Ω, ω,

and Mepoch as described in §3.4.1, it still achieved more accurate values of these

three parameters as shown in Table 3.8. The GA’s behaviour is further illustrated

in Figure 3.7; the lack of subsequent convergence after seeding and after 100,000

generations could also point to numerical difficulties in calculating precise satellite

positions along the ephemerides.
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Element GA Approximation Actual Value Error

a 137450238 137670000 0.0127

e 0.0008922 0.0012 0.0003

i 9.353e-09 0.003 0.0005

Ω 1.157 0.0087 0.183

ω 6.112 5.786 0.0519

Mepoch 0.217 2.753 0.404

Table 3.8. GA results on Atlas with a seeded population of 100,

after 100,000 generations.

Figure 3.7. Overall best fitness, µfitness (dotted curve), and

σfitness of the size-100 GA after seeding, smoothed over 1,000

generations. The absence of order-of-magnitude increases in fit-

ness and the relatively stable σfitness could indicate a numerical

impossibility of convergence any closer to the global minimum.

3.4.3. Parallelising GAs. An idea closely related to that of cross-fertilisation

is that of parallelisation, which aims primarily at distributing the GA for efficient

computation on decentralised systems. Besides the method of running distinct

populations on different machines that are then cross-fertilised, one can also create
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a non-traditional GA that operates not in synchronised generations, but utilises

one centrally managed population:9

The population could be kept on one central machine, which would be made

globally accessible. ‘Worker’ threads on ancillary machines would request two ran-

domly selected members of the central population, breed a new organism, and

suggest it to a manager thread for inclusion if its fitness is higher than the lowest

fitness in the major population. Probabilistic methods of selection could also be

used in the inclusion routine, to avoid greediness: when replacing an old organism

in the population with a newer one, the organism that ‘dies’ could be selected at

random with weighting according to fitness, instead of having the manager thread

deterministically select the least fit organism to be replaced.

This parallelisation and the cross-fertilisation parallelisation of Mitchell (1997)

[29, p. 268] could be run asynchronously on cluster setups with any number of

machines of any speed. Such an implementation could be especially useful for

solving astrophysical problems without expensive computing resources, as discussed

in Chapter 9.

9This idea is due to Mr Andrew Foster, UNC-CH, who implemented it for an astrophysical

application.



CHAPTER 4

Particle Swarm Optimisation for Astrophysical

Modelling

4.1. Fundamentals of PSO

Particle swarm optimisation (PSO) is another learning technique inspired by

a physical process—the behaviour of flocks of animals or swarms of insects. An

implementation of PSO consists of an initially randomised swarm of particles, each

representing a hypothesis in the search space, wherein each particle has its own

velocity vector over the set of search parameters. Thus, each particle is ‘moving’

independently about the search space.

At each step of the algorithm, the velocity of each particle is adjusted to ap-

proach stochastically the position of the current ‘best’ particle or the overall ‘best’

particle, for some given fitness function. The algorithm must thus remember the

overall ‘best’ particle, but this is minimally memory-intensive. The basic update

equations are as follows.

v[i] = v[i] + 2× rand()× (pcurrentbest − p[i])(4.1a)

+ 2× rand()× (poverallbest − p[i])

(4.1b) p[i] = p[i] + v[i]

In these equations [26], p[i] and v[i] represent the position and velocity vectors of

a particle i in the six-dimensional parameter space; pcurrentbest and poverallbest are

the ‘best’ particles in the swarm, as described above; and rand() is a random real

number in the interval [0, 1].

4.1.1. Advantages of PSO. Without the crossover and mutation operators

of a GA, PSO has fewer parameters to tweak for any particular application. The

velocity update feature allows the swarm to accelerate (up to some optionally speci-

fied maximum velocity vmax) towards minima in the search space, while its velocity

components themselves, combined with the stochastic element in equation (4.1a),

allow the algorithm to avoid converging on local minima. The minimal need for

21
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centralised information exchange in a PSO algorithm also make the technique well

suited for distributed processing.

4.2. Implementation of PSO

4.2.1. Particles and Swarm. As in the GA implementation, a particle in

PSO primarily represents the six orbital parameters in a data structure. Addition-

ally, velocities of the parameters over the search space are represented, with a max-

imum velocity bound (see §4.2.2.2) imposed on five of the parameters. Lower max-

imum velocities encourage faster convergence and less erratic particle behaviour,

but they also incline the algorithm more towards early convergence to local minima

in the parameter space. Swarm sizes are similar to population sizes for the GA

implementation, i.e., 100 to 100,000.

4.2.2. Problem-Specific Methods.

4.2.2.1. Circular Search Dimensions. Since the particles in the PSO implemen-

tation are ‘moving’ about the search space with certain velocities, a problem arose

with the angular value representations of four of the orbital parameters. Since these

parameters are only valid in the range [0, 2π) radians (or rather since a broader

search space where values are congruent modulo 2π tends to prevent PSO conver-

gence), one obvious solution would be to impose ‘physical’ limits on the particles to

prevent them from exploring outside of this interval. However, this limiting induces

the particles to converge prematurely at the edges of the search space: high veloci-

ties send a few particles near the boundaries, where they halt; the more fit particles

in these clusters attract other particles to the boundaries, and the convergence

problem worsens.

The first solution to this problem is to create a circular search space in the four

dimensions with angular values. Such a search space has two important properties:

(1) Particles are allowed to move beyond the interval [0, 2π), but their radian

values are immediately adjusted (mod 2π) to replace them into the interval

before further calculations; and

(2) When calculating velocity updates, particles do not simply move towards

the linear values of the best-fit particles, but travel the shortest distance

(arc length) around the 0-to-2π radian circle.

For example, if a particle with position 0 were moving towards a particle with

position 3π/2, it would not update its velocity with the positive value (3π/2− 0),

but, by (2), with the negative value −(2π−(3π/2−0)) = −π/2, inclining it towards
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the shorter path around the radian circle. By (1), then, its radian value would be

adjusted, if necessary, to keep it in the interval [0, 2π).

4.2.2.2. Maximum Velocities. The methods described in §4.2.2.1 are, however,

not enough to guarantee a simpler PSO convergence for this problem. The following

example best illustrates the remaining difficulty, and why we impose maximum

velocities on the particles in five out of six dimensions.

Suppose the current best and overall best particles are resting at a position of

0 radians. A particle with high positive velocity around the circle is attempting

to approach the 0-radian position, and is currently at π/2 radians. Its velocity is

updated, therefore, by adding a small negative value to its current large positive

velocity. By the next time step, its positive velocity has lessened slightly, but it has

continued to move past the π radians position and is still attempting to approach

the 0 position. At this point, its velocity is updated with a further positive value,

and it passes the 0 position by the next time step, thus restarting the process and

preventing convergence.

One solution to this further convergence problem is to impose maximum abso-

lute velocities on the particles, meaning that |v[i][j]| < vmax for all particles i in

each dimension j at all times. Intuitively, a maximum velocity for one of the four

angular dimensions should be less than π/2, so we have experimented with vmax

values between 0.1 and 1.5. We have also imposed a maximum velocity of 0.1 on

the eccentricity (e) parameter in order to avoid the clustering problem described in

§4.2.2.1. Simulations run without maximum velocities yielded both the clustering

and convergence problems, as expected. No maximum velocity was necessary for

the semi-major axis (a) parameter, being unbounded (or rather being limited to

Z+) and not susceptible to either of the convergence problems described above.1

4.2.3. Learning Factors. Learning factors c1 and c2, which control the ve-

locity updates with respect to the current best and overall best particles, were both

set to c1 = c2 = 2, as recorded in equation (4.1a). This makes it as likely that

a particle will move towards the current best particle as towards the overall best

particle, but reduces the greediness of the algorithm so as to better avoid local

minima in the error function.

4.2.4. Dimensionally Independent Velocity Updates. A more stochastic

movement for particles was tested by assigning independent random coefficients to

1Some clustering was observed at a = 1, but not to a significant degree.
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each of the orbital elements in the particles’ position vectors:

v[i] = v[i] + 2× r⊗ (pcurrentbest − p[i])(4.2)

+ 2× r⊗ (poverallbest − p[i])

where r is a six-dimensional vector of independently randomised reals in [0, 1] and

the operator ⊗ represents element-wise multiplication. However, this modification

made the algorithm too erratic; it would converge only minimally, although particles

would occasionally stumble upon high-fitness solutions. Note that, even though the

statistically expected changes in velocity are the same in each dimension:

E(∆v[i]) = 2× E(r)⊗ (pcurrentbest − p[i])(4.3)

+ 2× E(r)⊗ (poverallbest − p[i])

= 2× 0.5× (pcurrentbest − p[i]) + 2× 0.5× (poverallbest − p[i])

= (pcurrentbest − p[i]) + (poverallbest − p[i])

= 2× 0.5× (pcurrentbest − p[i]) + 2× 0.5× (poverallbest − p[i])

= 2× E(rand())× (pcurrentbest − p[i])

+ 2× E(rand())× (poverallbest − p[i])

the net effect is different because the probability of uniform movement towards one

‘best’ particle is significantly lower:

P (rand1 � rand2) > P (r1[1]� r2[1] ∧(4.4)

... ∧

r1[6]� r2[6]),

where randi ∈ [0, 1] and ri ∈ [0, 1]6.

4.2.5. Fitness and Termination Conditions. Fitness and termination con-

ditions are as described in §§3.2.3 and 3.2.5. Algorithm runs that were observed to

converge prematurely were halted immediately.

4.3. Results and Analysis

4.3.1. Artificial Dataset. Just as with our GA implementation, we tested

the PSO technique on the artificial dataset, to begin. We used swarm sizes of 100

and 1,000, and maximum velocities of 0.1, 0.25, 0.5, and 0.75. As shown in Tables

4.1 and 4.2, there was no plain correspondence between parameter settings and best
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Size vmax Best Fitness ...at Gen. Total Gen’s Runtime/105 G’s

100 0.1 5.78903e-07 6657 80000 599.88 s

100 0.25 3.14102e-06 42467 80000 606.80 s

100 0.5 1.07012e-07 76614 80000 611.58 s

100 0.75 2.88145e-07 44341 80000 594.45 s

1000 0.1 3.70166e-07 10886 20000 2779.1 s

1000 0.25 4.11467e-07 8830 20000 2858.8 s

1000 0.5 1.11125e-06 9898 20000 2886.8 s

1000 0.75 3.02420e-07 6137 20000 2812.3 s

Table 4.1. PSO performance on the artificial dataset. Best fitness

is the overall best fitness observed.

fitness achieved, but parameters did affect the convergence behaviour of the swarm

as regards precision around the global minimum and the local minima problem of

§3.3.1.

Smaller swarms could run through more generations than larger swarms, as

with GAs, but many of the PSO runs achieved their best overall fitness at or before

running through 50% of their total generations. This attests to the very erratic

behaviour of the particles in the search space; running through more generations

often did not improve the algorithm’s result, although more generations ought the-

oretically to yield improvement. It was more important that our algorithms did not

converge prematurely at the beginning of their runs (for which higher vmax values

and larger swarms were better), and that their particles eventually converged once

in the region of the search space near the global minimum (for which lower vmax

values were better). One possible remedy for this vmax dilemma is presented in

§4.4.

4.3.2. Himalia. PSO was not tested on Jupiter’s moon Io, but the algorithm

achieved results with a 58% improvement in fitness over our GA’s results after

60,000 generations with a swarm of 1,000. However, these improvements do not

show through, as most of the accuracy increase was apparently in the four orbital

parameters whose correct values we cannot transform out of the Laplace plane.

Even still, the error of the a estimate seen in Table 4.3 is noticeably high.

4.3.3. Atlas. For Saturn’s moon Atlas, we first present results from PSO runs

of size 1,000 and vmax between 0.5 and 1.0; smaller swarms and lower vmax values



26 4. PARTICLE SWARM OPTIMISATION FOR ASTROPHYSICAL MODELLING

Size vmax a e i Ω− (ω +Mepoch)

100 0.1 100033396 0 3.14054 3.85625

100 0.25 100009747 0 3.1414 5.57166

100 0.5 100023939 0 3.14632 4.52465

100 0.75 100030855 0 3.1429 4.03221

1000 0.1 99964288 0 3.14294 2.59303

1000 0.25 100032127 0 3.14362 3.95884

1000 0.5 99992860 0 3.14103 0.52695

1000 0.75 99963548 0 3.14104 2.63425

Table 4.2. PSO results on the artificial dataset. The e values are

all nought because no maximum velocity had yet been set on this

parameter; the clustering problem of §4.2.2.1 yielded these values.

Element GA Approximation Actual Value Error

a 14763515741 11461000000 0.2882

e 0.2423 0.1623 0.0800

Table 4.3. PSO results on Himalia with population 1,000 and

vmax = 0.5, after 60,000 generations. Other parameter settings

produced more accurate a and e estimates, but the run presented

here had the highest overall fitness.

either fell too quickly into local minima or converged nearly immediately in a flat

region of the search space very far from the global minimum. We then present

an analysis of our PSO runs, including a couple runs that fell into local minima,

and discuss how the successes and failures are distinguishable by their convergence

behaviour. Then, a remedy for the local minimum convergence problem is presented

in §4.4.

Our best PSO results were achieved with a vmax setting of 0.5, when the al-

gorithm did not fall into a local minimum. A fitness slightly less that of our GA

was achieved, although it was of the same order of magnitude. The approximated

orbital elements are presented in Table 4.4. We see from these elements that the

PSO, like the GA in §3.3.3, had difficulty optimising fitness in the flat search space

in the vicinity of the global minimum (where a, e, and i are close to the actual

values).
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Element GA Approximation Actual Value Error

a 137446613 137670000 0.0016

e 0 0.0012 0.0012

i 8.579e-05 0.003 0.0029

Ω 3.112 0.0087 0.494

ω 1.682 5.786 0.653

Mepoch 2.682 2.753 0.0113

Table 4.4. PSO results on Atlas with population 1,000 and

vmax = 0.5, after 80,000 generations.

However, many of our PSO runs did not approach the global minimum, but in-

stead converged prematurely at the beginning of the run (usually with swarms

smaller than 1,000 and/or vmax < 0.5) or fell into a local minimum, such as

a = 40635000, i = π. The premature convergence is easily detected (as variance

quickly drops to nought), but the local minima problem involves more subtle swarm

behaviour in our particular search space. We present some observations of this be-

haviour that may be useful in other search spaces with similar local minima features.

Particle swarms that have fallen into a local minimum exhibit a couple well

defined characteristics: (1) when smoothed, σfitness does not show any order-of-

magnitude increases over the course of the run (often quickly decreasing from its

initial value), and (2) when smoothed, µfitness and σfitness have a negative corre-

lation, such that µfitness + σfitness remains roughly constant. On the other hand,

swarms that approach the global minimum exhibit (3) a sharp drop in µfitness, (4)

a sharp rise in σfitness and (5) a positive correlation between the current best value

and σfitness, once all values have been smoothed.

Characteristics (1) and (2) are illustrated in Figure 4.1; the low σfitness value

probably attests to early convergence in the search space, or at least convergence

towards a value (e.g., a = 1) that produces similar fitnesses. Eventually, a low

σfitness value is desirable, but not at the outset of the run where diversity of pa-

rameter values in the swarm is important for a fuller exploration of the search space.

The negative correlation between µfitness and σfitness (2) in failing swarms could

also attest to the small-scale introduction of diversity in the swarm when σfitness

rises. This diversity already exists in successful swarms that are approaching the

global minimum, so there is no strong negative correlation, seen in Figure 4.2.
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Figure 4.1. µfitness (blue) and σfitness (green) of particle swarms

with vmax = [0.5, 1.0] that have fallen into local minima. σfitness

remains near its initial value, which represents the variance of ran-

domly initialised orbital elements.
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Figure 4.2. µfitness (blue) and σfitness (green) of successful par-

ticle swarms with vmax = [0.5, 0.75, 1.0]. Note the early drop in

µfitness and the early increase in σfitness, as well as their lack of

clear correlation.
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Characteristics (3) and (4), also visible in Figure 4.2, are also due to the early

introduction of diversity into the successful particle swarms. Surprisingly, µfitness

drops below its initial value (which represented the mean fitness of randomly ini-

tialised particles); this could indicate a search space feature similar to a steep hy-

perdimensional Mexican hat function (where high-fitness values are surrounded by

below-average-fitness values), called the Laplacian of Gaussian function.2 Finally,

the positive correlation between the current best fitness and σfitness (5), seen in

Figure 4.3, highlights the multiple-order-of-magnitude leaps in the current best fit-

ness relation (see also Figure 4.5) for successful particle swarms; the lack of this

relation in failing swarms is seen in Figure 4.4.

As seen in Figure 4.5, the smaller vmax value of 0.5 brings about many more

high-fitness peaks above the 10−8 fitness level than do larger vmax values, by moving

around more ‘slowly’ close to the global minimum. Unfortunately, smaller vmax

values often prematurely converge or fall into local minima, but a solution for this

dilemma is presented in §4.4.

4.4. Discussion

As mentioned in §4.3, smaller swarm sizes and smaller values of vmax often

converge prematurely, but smaller values of vmax yield more precise solutions if the

swarm approaches the global minimum, and smaller swarm sizes can sometimes

be more computationally efficient. In order to leverage the advantages of smaller

swarms and smaller vmax values while avoiding premature convergence, we imple-

mented a simple, tapered vmax setting: this tapered vmax is initially very high to

avoid early convergence and allow the particles to explore the search space, but it

is gradually reduced over the course of the run so that a very small vmax is enforced

once the swarm has located the region of the global minimum.

We present three runs: firstly, a swarm of 1,000 with a short taper to 80,000

generations, secondly, a swarm of 1,000 with a longer taper to 100,000 generations,

and thirdly, a swarm of 100 with the longer taper to 200,000 generations. Table 4.5

presents the tapered vmax values and their corresponding generation marks.

All runs of the tapered PSO algorithm (including several not presented here)

successfully avoided premature convergence, and all approached the global mini-

mum. Additionally, all achieved significant improvements in fitness over our best

performing basic PSO run (although still not reaching the fitness of our GA run),

2http://en.wikipedia.org/wiki/Mexican hat wavelet
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Figure 4.3. Current best fitness (blue) and σfitness (green) of

particle swarms sized 1,000 with vmax = [0.5, 0.75, 1.0]. The major

increases in σfitness correspond to enormous leaps in current best

fitness values, creating the distinct positive correlation.
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Figure 4.4. Current best fitness (blue) and σfitness (green) of

failing particle swarms of size 1,000 with vmax = [0.5, 1.0]. The

lack of positive correlation is due to the lack of order-of-magnitude

leaps in current best fitness that would strongly affect σfitness.
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Figure 4.5. Overall best fitness and current best fitness, be-

fore smoothing, of particle swarms sized 1,000 with vmax =

[0.5, 0.75, 1.0]. The first plot is a log plot.
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vmax From Gen. (short) From Gen. (long)

1.5 0 0

1.0 5000 10000

0.75 10000 20000

0.5 15000 30000

0.25 20000 40000

0.1 25000 50000

0.05 30000 60000

Table 4.5. Incremental vmax values for the tapered PSO algo-

rithm and the generations at which they are enforced.

indicating that the smaller vmax values in later generations were effective at in-

creasing precision in orbital element estimations. Figures 4.6 and 4.7 display the

familiar characteristics of successful PSO runs.
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Figure 4.6. Overall best fitness (blue) and µfitness (green) of the

tapered PSO runs. µfitness drops from its initial value, as ex-

pected.
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Figure 4.7. Current best fitness (blue) and σfitness (green) of

the tapered PSO runs. Note the same clear positive correlation

between current best fitness and σfitness, as well as the increas-

ing σfitness values over time. Also, no clear negative correlation

between µfitness (Figure 4.6) and σfitness is apparent.



Part II

Photometric Redshift Estimation



CHAPTER 5

Quasar Redshifts in Optical Sky Surveys

5.1. Quasars and Redshifts

Quasars, or quasi-stellar objects (QSOs), are thought to be regions of gas sur-

rounding supermassive black holes at the centres of very distant (> 800 million

light-years) galaxies. Because quasars are at such great distances, they exhibit very

high redshifts (z), translations of observations (on the electromagnetic spectrum)

towards longer wavelengths (λ) as a result of the expansion of the universe:

(5.1) z =
λobserved − λexpected

λexpected

such that 1+z represents the ratio of expansion of the universe between the moment

of the object’s light emission and our current time:

(5.2) 1 + z =
λobserved
λexpected

That is, if an object is observed at z = 1, then the universe has expanded by a

factor of 1 + z = 2 since the light reaching us was emitted.

Accordingly, since distance on cosmological scales is directly correlated with

redshift, and since quasars are the most distant directly observable objects in the

universe, it is useful to be able to determine their redshifts accurately and efficiently.

Further study into the properties of quasars at different redshifts will contribute to

a better understanding of cosmological evolution and the large-scale structure of

the universe.

Unfortunately, the most accurate method of redshift determination (using spec-

troscopy, see §5.3) is very time-consuming and does not scale to keep up with the

number of quasars being identified using modern techniques: Ball et al. (to appear)

state, “the number of spectra available typically lags the number of [photometric]

images by more than an order of magnitude” [6]. Thus, we present here methods

of photometric redshift estimation that are hundreds of times more efficient than

spectroscopic determination and are increasingly consistent with the most accurate

spectroscopic results.

38
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Band Colour Wavelength

u near-ultraviolet 3590 Å

g green (visible) 4810 Å

r red (visible) 6230 Å

i far-red 7640 Å

z further-red 9060 Å

Table 5.1. ugriz filters used in the SDSS.

5.2. The Sloan Digital Sky Survey

The Sloan Digital Sky Survey1 (SDSS) [47] is perhaps the most comprehensive

sky survey taken to date; it has catalogued nearly 25% of the sky2 using five broad-

band photometric filters, which allow its telescope to simultaneously measure the

luminosity of objects at different wavelengths, or in different ‘colours’. The SDSS

uses the u, g, r, i, and z filters,3 which measure light between 3590 Å and 9060 Å4

[47] as listed in Table 5.1.5

5.3. Spectroscopic Redshifts in the SDSS

Photometric data aside, the SDSS has also captured the electromagnetic spec-

tra—energy measurements over all ‘optical’ wavelengths from 3800 Å to 9200 Å at

a resolution of approximately λ/∆λ = 1800 [47]6—of some 100,000 quasars. These

spectra yield a great deal of information about the quasars inspected, including

their chemical contents, temperatures, any intervening gases blocking our line of

sight in the interstellar medium, and, most importantly for our purposes, their

spectroscopic redshifts (zspec). These values are the most accurate estimates of

1Funding for the SDSS has been provided by the Alfred P. Sloan Foundation, the Participat-

ing Institutions, the National Science Foundation, the U.S. Department of Energy, the National

Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society,

and the Higher Education Funding Council for England.

2http://www.sdss.org/background/
3We use the designations ugriz and u′g′r′i′z′ (as found in much of the literature) inter-

changeably; details of their differences can be found in [1], [17], [31], and especially [37]. Note

that the ugriz photometric system supersedes the preliminary u∗g∗r∗i∗z∗ system in [31].

41 ångström = 0.1 nanometres.

5Cf. also [35] and [16] for ‘effective wavelength’ figures.

6Cf. [2] and [20].
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redshift available, as they make use of data points taken across such a large region

of the electromagnetic spectrum.

5.4. Magnitudes and Photometric Colours

We have noted that the SDSS uses the ugriz photometric system; each of

these five measurements is a logarithmic measure of flux (F )—a measurement of

the amount of light emitted by an object per unit of time—around a particular

wavelength. Since the measurements are logarithmic (e.g., u ∝ logFu), and since

log a− log b = log(a/b), their differences represent flux ratios; for example, u− g ∝

log(Fu/Fg). It follows from this that the photometric colours u − g, g − r, r − i,

etc. give us information about the colour proportions of a quasar as observed from

Earth. We use the notation Cxy to denote the colour x − y as in Richards et al.

(2001b) [32].

5.5. Photometric Redshift Estimation

There are two major contributing factors in photometric redshift (zphot) es-

timation: firstly, the location of redshifted spectral features in wavelength space

relative to the ranges of the broadband filters; and, relatedly, the structure of the

colour-redshift relation (CZR).

Independent of redshift, quasar spectra are known to exhibit certain prominent

emission and absorption lines, notably Mg II, C III, C IV, and Lyman-α [37]. At

different redshifts, however, these spectral lines are observable at different wave-

lengths, and so move in and out of the ranges of the ugrizJHK bands as redshift

increases [31]. For redshifts (z ∼ 0.3) at which the Mg II emission line is observable

in the u band, for example, the colour Cug is much bluer than usual. As Mg II

moves into the g band at z ∼ 0.6, Cug becomes redder while Cgr becomes bluer

(Figure 8.1).

However, when these spectral features are not observed in the bandpasses in

use, there can be significant degeneracy in the CZR in colour-colour space (see

Figure 8.3), whereby the same set of colours corresponds to more than one red-

shift. Richards et al. (2001b) point out, then, that “z is not strictly a function of

color” [32]. This degeneracy can lead to systematic errors in zphot and regions of

‘catastrophic failure’ [5] in the zphot-zspec relation.
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Band Colour Wavelength

J near-infrared 12350 Å

H near-infrared 16620 Å

K near-infrared 21590 Å

Table 5.2. JHK filters used in 2MASS [20].

5.6. SDSS Quasar Dataset

The data we use are from the third SDSS Quasar Catalog [35] via the Center

for Astrostatistics at Penn State University.7 This dataset primarily comprises

46,420 quasars measured in ugriz filters with corresponding zspec values, but the

quasars are cross-referenced with other sky surveys (FIRST [8], RASS [3], 2MASS8

[38]) when possible. These three additional surveys add matching broadband radio,

X-ray, and JHK (shortward of z, see Table 5.2) magnitudes for 3,757, 2,672, and

6,192 quasars, respectively.

The third edition of the quasar catalog, sourced from SDSS Data Release 3

(DR3), contains ugriz magnitudes that have not been corrected for galactic extinc-

tion.9 Since the effects of galactic extinction are systematic and not variable, we

have not performed the extinction corrections on our dataset; training with artificial

neural networks and radial basis function networks nullifies these systematics [13]

if the test data are also uncorrected. Leaving the data as-is also allows us to make

use of stated one-sigma Gaussian10 measurement errors (i.e., photometric noise es-

timates) for ugrizJHK magnitudes without introducing additional variance for

extinction corrections. The utility of these photometric measurement errors leads

us to omit the radio and X-ray measurements that lack stated error bars.

7http://astrostatistics.psu.edu/datasets/SDSS quasar.html
8This publication makes use of data products from the Two Micron All Sky Survey, which

is a joint project of the University of Massachusetts and the Infrared Processing and Analysis

Center/California Institute of Technology, funded by the National Aeronautics and Space Admin-

istration and the National Science Foundation.
9Also called reddening, extinction is the scattering of emitted light in the interstellar medium

due to the presence of intervening dust and gas particles; in near-optical wavelengths (e.g., ugriz,

objects appear redder than they should.
10The assumption that we can treat stated error bars as following a Gaussian was confirmed

by Dr Daniel Vanden Berk, Dept of Astronomy and Astrophysics, Penn State University, in private

communication. This assumption is crucial for determination of output confidence in §6.2.1.
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We have arranged the data into five different input sets (with set sizes par-

enthetical) for training and testing: ugriz (46,420); Cug, Cgr, Cri, Ciz (46,420);

ugriz, Cug, Cgr, Cri, Ciz (46,420); ugriz6192 (6,192 matched to 2MASS); ugrizJHK

(6,192); and Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK (6,192). For each dataset, we have

the above 4–9 input magnitudes, corresponding zspec, and, for some tests, pho-

tometric error values;11 our aim is to investigate how effectively different machine

learning techniques can make use of these photometric input data to estimate quasar

redshifts.

11For errors of colours Cxy , we sum the errors σx and σy in quadrature: σCxy =
q
σ2

x + σ2
y ,

following Richards et al. (2001b) [32].



CHAPTER 6

Artificial Neural Networks for Photo-z Estimation

6.1. Basics of Artificial Neural Networks

6.1.1. Motivation and Network Structure. The artificial neural network

(ANN) has as its model the functioning of the human brain [30, p. 166]: the

basic unit of an ANN is the neuron, which takes a real-valued input and fires—

outputting 0 or 1 or perhaps a value in (0, 1)—according to an activation function

(e.g., a Heaviside step function or a sigmoid function) over the input. These neurons

are arranged into a network architecture, typically layered such that all neurons in

adjacent layers are connected to each other, output-to-input.

With this ordered structure, as seen in Figure 6.1, neurons in the middle (‘hid-

den’) and output layers have multiple inputs, which are weighted in the training

stage described below. Additionally, a bias term is added to each neuron’s input

(in the hidden and output layers) before its output is calculated. Thus, an ANN

with one hidden and one output layer (we call this a two-layer ANN, as in [9, p.

119]) is completely specified by its network architecture, two matrices (‘vectors’)

each of weights and biases, and the activation functions used inside the neurons.

6.1.2. Network Training and Error Backpropagation. An ANN learns

by adapting its weight and bias vectors based on a set of training data of input

vectors and corresponding output values. The goal of the training stage is to adapt

the weights and biases in the network so as to minimise errors over the training

examples; however, one may allow for some small errors over the training set in

order to avoid overfitting (memorising) the training data at the expense of the

ANN’s predictive ability on unseen test sets.

To properly adjust the weight and bias vectors to fit the training set, ANNs

are trained with an algorithm known as Backpropagation [29, p. 97], which

first runs a training input through the ANN, then ‘propagates’ errors backwards

through the network by attributing corrections to individual neurons according to

their responsibility in contributing to the overall error [9, p. 140]. A full description

of the Backpropagation algorithm can be found in Mitchell (1997) [29, p. 98].

43
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Figure 6.1. The structure of a 2:5:1 artificial neural network.

From http://en.wikibooks.org/wiki/Artificial Neural Networks.

6.1.3. Function Representation in an ANN. It is useful to know how

many layers and how many neurons we must have in an ANN in order to properly

represent the non-linear functional relationship between photometric magnitudes

and redshifts. Bishop (1995) demonstrates that “any given decision boundary can

be approximated arbitrarily closely by a two-layer network having sigmoidal activa-

tion functions” [9, p. 126] and a sufficiently large number of neurons in the hidden

layer (‘hidden units’). While this does not tell us how many neurons or digits of

numerical precision we will require for a particular problem, it does remind us that,

in principle, two-layer ANNs are equivalent in representational capability to net-

works with three or more layers. Accordingly, for simplicity’s sake, we will restrict

our investigations to two-layer networks.

6.2. Concerns in Redshift Estimation

6.2.1. The Jacobian Matrix and Output Confidence. In astrophysical

applications, it is important to know not just the best-estimate value, but also

to quantify the accuracy of that estimate.1 Since we have one-sigma (normally

distributed) measurement errors (σu, etc.) for each of the ugrizJHK magnitudes

in the SDSS quasar dataset, we demonstrate how they can be used to derive error

bars for individual zphot outputs in an ANN.

1Cf. [6] and [32].
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Given the use of differentiable sigmoid functions in our hidden layer (as op-

posed to some non-differentiable step functions), we can apply a series of partial

derivatives to propagate errors for inputs xi (σxi , understood in the sense of δxi)

forwards through the network (similar in form to the Backpropagation algo-

rithm) to arrive at a variance σ2
y for output y = zphot. This is done by means of

the Jacobian matrix J , where

(6.1) Ji ≡
∂y

∂xi

for a single-output network. The Jacobian matrix thus “provides a measure of the

local sensitivity of the outputs to changes in each of the input variables” [10, p.

247] according to

(6.2) σ2
y '

∑
i

Jiσ
2
xi
.

We therefore present one-sigma confidence intervals σy for zphot values esti-

mated with ANNz, although we note that similar estimations are possible for radial

basis function networks with the differentiable basis functions we present in Chap-

ter 7. It should also be borne in mind that these stated uncertainties are only those

attributable to the presence of photometric noise in the SDSS measurements; they

do not take into account degeneracies in the colour-redshift relation or difficulties

inherent in estimating quasar zphot values at certain redshifts (see §8.2).

6.2.2. Gaussian Weight Distribution and Committees of Networks.

Before an ANN is trained, its weight and bias vectors are initialised with values

close to and normally distributed about 0. Since the particular (local) minima

found by weight optimisation algorithms depends on the randomised initial val-

ues [9, p. 255], ANNs with slightly different starting parameters will end up with

slightly different representations of the estimated function. In fact, Way & Sri-

vastava (2006) point out that “distribution of errors follows a Gaussian” despite

the nonlinearity of the computed function [43]. So, rather than training several

ANNs and choosing the network with the best performance on the training or test

set, multiple trained networks can be combined to form a committee of networks;

Bishop (1995) demonstrates that these committees will have expected error values

of at most the expected error of an individual network [9, p. 366]. This result is

due primarily to the averaging out of the normal variance in zphot output created

by the Gaussian distribution of initial parameters.
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Because of the expected nonlinearity of the functions represented by ANNs, we

do not average the weight or bias vectors of these conjoined networks, but we take

the mean2 of their zphot output values. In our implementation, each network in a

committee differs only in its initial weights and biases before training, and not in

architecture, in choice of activation functions, or in the order/selection of training

examples from the dataset.3

6.3. Implementation of Artificial Neural Networks

6.3.1. ANNz . We use two implementations of ANNs in our investigations.

The first and primary implementation is a software package by Collister & Lahav

(2004) called ANNz [13], nominally presented as a tool specially designed to apply

ANNs to the problem of photometric redshift estimation. In fact, ANNz is merely

a general-purpose ANN tool that implements such advanced techniques as the Ja-

cobian matrix, quasi-Newton optimisation,4 and committees of networks; nothing

in its code is specifically designed for photometric redshift estimation.

ANNz will construct a feed-forward ANN (the specific variety of ANN used is

known as a multi-layer perceptron, or MLP) of any size, with any number of layers

and any number of neurons in each layer. The notation we use, following Firth

et al. (2002) [15], specifies the number of neurons in each successive layer; e.g.,

4:6:1 specifies a two-layer network with 4 inputs, a single output, and one hidden

layer of 6 neurons. This network is then trained on a training set (we have used

training sets of a random sample of 60% of our data) whilst being validated on

a validation set (20%). This validation set allows ANNz to avoid overfitting the

training data;5 it fits to the training data for any specified number of iterations but

selects the network weights and biases that produce the lowest root-mean-square

(RMS) deviation—between its estimated zphot and the accurate zspec value—over

the validation set [13]:

(6.3) σRMS =
√
〈(zphot − zspec)2〉

2Median can also be used, cf. [40] and [15].
3Cf. again Vanzella et al. (2004) [40] who use simple gradient descent. The order of training

examples makes no difference in our implementation, as we use batch optimisation methods [10,

p. 240] that act on the entire training set simultaneously.
4The limited-memory quasi-Newton technique [9, p. 289] used by ANNz is a method of

optimising hidden-layer weights that is more robust than the scaled conjugate gradient method

(see §6.3.2) but has significantly higher computational cost.

5This follows from Mitchell (1997) [29, p. 111] and Bishop (1995) [9, p. 372].
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The validation set thus mimics the test set and allows the ANN to test its param-

eters against unseen data before being applied to the test set (the remaining 20%

of the data), fitting to the training data as closely as possible while still preserving

the generalisation capabilities of the network.

Additionally, ANNz estimates variances in its zphot outputs as described in

§6.2.1,6 and readily applies committees of networks as described in §6.2.2. We

present results using both of these techniques in §6.4. Hidden units in ANNz use

the logistic sigmoid activation function7 [10, p. 228]:

(6.4) σ(a) ≡ 1
1 + e−a

whose output values are restricted to the interval (0, 1). On the other hand, units in

the output layer use a linear activation function (a simple sum of its weighted inputs

and biases; linear transformations are unnecessary given the training process) so

as not to restrict the range of possible network outputs. Note that there is no loss

of generality with the linear output [9, p. 127]; it does not limit our network’s

representational capability as put forward in §6.1.3.

6.3.2. MLPs in Netlab. Our second implementation of ANNs (MLPs) is in

Netlab,8 a toolbox of MATLAB R© methods written by Ian T. Nabney and Christo-

pher M. Bishop. Netlab provides a slightly more customisable implementation,

allowing us to make use of hyperbolic tangent activation functions in the hidden

layer:

(6.5) tanh(a) ≡ ea − e−a

ea + e−a

which are equivalent in representational power to logistic sigmoid functions [9,

p. 127] yet tend to converge faster in training.9 Additionally, Netlab provides

the option of using a scaled conjugate gradient10 algorithm to train the weights

at O(NW ) computational cost, instead of the O(NW 2) cost for a quasi-Newton

method [9, p. 288], where N is the number of training examples and W is the

number of adaptive weights. However, MLPs in Netlab cannot have more than

6ANNz also includes error due to deviation in committee members’ estimations; the program

sums this standard deviation in quadrature with the photometric measurement errors, but we

have removed this committee error in order to focus on error due to measurement noise.

7See source code at http://zuserver2.star.ucl.ac.uk/∼lahav/annz.src.tar.gz.

8http://www.ncrg.aston.ac.uk/netlab/

9Cf. also [30, p. 185].

10See [9, p. 282] for a description of this technique.
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one hidden layer and do not include the readily calculated output variance figures

according to the Jacobian matrix, as in ANNz. Still, the training of MLPs in

Netlab gives us a more direct point of comparison to radial basis function networks

(Chapter 7, also implemented in Netlab) with respect to accuracy, efficiency, and

convergence.

6.4. Results and Analysis

For ANNz, we use network architectures of x:10:1, x:20:1, x:40:1, and x:100:1

for each dataset, and we form committees of five networks in each case, trained up

to 1,000 iterations or until network convergence (whichever is first). We present

committee zphot RMS errors and the average (also RMS) error attributable to pho-

tometric noise in the measurements, as well as the percentage of redshifts success-

fully predicted within ∆z = [0.1, 0.2, 0.3], where ∆z ≡ |zphot−zspec|, for consistency

with the literature. For MLPs in Netlab, we use the same network structures as

with ANNz, but instead present some individual network RMS errors: the mini-

mum, maximum, and mean RMS for networks in each committee, as well as the

σRMS obtained by the committee as a whole, after 500 and 1,000 training itera-

tions. The maximum number of iterations (1,000) was selected after observing the

convergence behaviour of x:40:1 and x:100:1 networks training over 3,000 iterations

while monitoring the error over the corresponding test set. Errors were found to

be minimal between 800 and 1,500 generations; training to a maximum of 1,000

iterations should allow us to avoid overfitting most of the training sets. Finally, we

look at plots of zphot vs. zspec and discuss the source of errors in zphot estimates.

6.4.1. Results with ANNz . Tables 6.1, 6.2, 6.3, and 6.4 present the error

values achieved with ANNz for architectures with 10, 20, 40, and 100 hidden units,

respectively.

Although RMS errors generally shrink with larger network sizes, the improve-

ment is clearly bounded (using a larger hidden layer does not always decrease error),

and in some cases (e.g., ugriz6192 and ugrizJHK for 100 hidden units) error ac-

tually increases with the larger network. Since ANNz does not merely take the

final set of weights and biases in training, but instead uses the weights and biases

that minimise error over the validation set, we do not see memorisation effects for

small datasets in larger networks. Instead, the increase in error for ugriz6192 and

ugrizJHK is due to the larger networks’ inability to train their weights and bi-

ases sufficiently over the smaller (order 6,192) datasets. Additionally, in previous
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Dataset σRMS RMSnoise ∆z ≤ 0.1 ≤ 0.2 ≤ 0.3

ugriz 0.4241 0.1752 0.3193 0.5444 0.6587

Cug, Cgr, Cri, Ciz 0.4256 0.1731 0.3313 0.5476 0.6603

ugriz, Cug, Cgr, Cri, Ciz 0.4148 0.1511 0.3372 0.5607 0.6729

ugriz6192 0.4940 0.2204 0.2410 0.4140 0.5460

ugrizJHK 0.3718 0.1695 0.3740 0.6120 0.7520

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.3857 0.2793 0.3550 0.5960 0.7190

Table 6.1. ANNz results with 5-committees of x:10:1 networks.

RMSnoise is the estimated error attributable to photometric mea-

surement noise, as discussed in §6.2.1.

Dataset σRMS RMSnoise ∆z ≤ 0.1 ≤ 0.2 ≤ 0.3

ugriz 0.4064 0.1819 0.3766 0.5906 0.6957

Cug, Cgr, Cri, Ciz 0.4109 0.1763 0.3709 0.5885 0.6943

ugriz, Cug, Cgr, Cri, Ciz 0.3958 0.1470 0.3753 0.5940 0.7075

ugriz6192 0.4793 0.2049 0.3140 0.4870 0.6140

ugrizJHK 0.3949 0.1506 0.2690 0.5420 0.6920

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.3621 0.2731 0.4390 0.6530 0.7630

Table 6.2. ANNz results with 5-committees of x:20:1 networks.

Dataset σRMS RMSnoise ∆z ≤ 0.1 ≤ 0.2 ≤ 0.3

ugriz 0.3970 0.1773 0.3963 0.6100 0.7123

Cug, Cgr, Cri, Ciz 0.4053 0.2135 0.4019 0.6148 0.7089

ugriz, Cug, Cgr, Cri, Ciz 0.3877 0.1611 0.4091 0.6265 0.7244

ugriz6192 0.5048 0.2281 0.3160 0.5080 0.6330

ugrizJHK 0.3730 0.1694 0.4380 0.6480 0.7500

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.3596 0.2791 0.4350 0.6630 0.7570

Table 6.3. ANNz results with 5-committees of x:40:1 networks.

Note the marked increase in σRMS for the ugriz6192 set.

(unlisted) runs we obtained consistent RMS errors of over 0.8 for the ugriz6192

and ugrizJHK datasets because of an unlucky random distribution of data into of

training and validation sets. This is not to suggest that a dataset with poor dis-

tributions is necessarily intrinsically unlearnable (Netlab MLPs and RBFNs could
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Dataset σRMS RMSnoise ∆z ≤ 0.1 ≤ 0.2 ≤ 0.3

ugriz 0.3960 0.1853 0.3983 0.6145 0.7129

Cug, Cgr, Cri, Ciz 0.4067 0.2022 0.4174 0.6228 0.7152

ugriz, Cug, Cgr, Cri, Ciz 0.3854 0.1599 0.4199 0.6380 0.7301

ugriz6192 0.5255 0.1162 0.1880 0.3680 0.4980

ugrizJHK 0.4081 0.1458 0.3610 0.5690 0.6990

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.3557 0.2905 0.4500 0.6480 0.7620

Table 6.4. ANNz results with 5-committees of x:100:1 networks.

Note the increasing σRMS for ugriz6192 and ugrizJHK.

learn on the ugrizJHK dataset that ANNz could not learn), but dataset size, dis-

tribution into training and test sets, and choice of weight optimisation algorithm

all contribute to the convergence behaviour of a learning network.

Also apparent from Tables 6.1–6.4 is that the breaking down of photometric

magnitudes into colours (ugriz into [Cug, Cgr, Cri, Ciz] and ugrizJHK into [Cug,

Cgr, Cri, Ciz, CzJ , CJH , CHK ]) tends to improve σRMS for ugrizJHK and but

worsens σRMS for ugriz. It is unclear why this is, but it may be a balancing between

the information contained in plain magnitudes and the information made more

explicit in their colours: the amount of information made explicit in [Cug, Cgr, Cri,

Ciz, CzJ , CJH , CHK ] is more than made explicit in [Cug, Cgr, Cri, Ciz], possibly

compensating for the loss of some information in one of the ugriz magnitudes.

That there is information to be drawn from both the magnitudes and their colours

is suggested by the fact that [ugriz, Cug, Cgr, Cri, Ciz] test sets are significantly

better predicted than either ugriz or [Cug, Cgr, Cri, Ciz] sets.

6.4.2. Results with MLPs in Netlab. Since MLPs in Netlab are function-

ally similar to those trained in ANNz, we consider different results in this section:

we use committees of five networks of the same architectures as in §6.4.1, but

we present minimum/maximum/mean/committee σRMS results. Networks were

trained up to 500 and 1,000 iterations. This presentation will better illustrate the

improvement expected when using committees of networks.

It is clear from Tables 6.5–6.8 that, as suggested in §6.2.2, MLP committees

can be relied upon to produce RMS errors on average no worse than the mean RMS

errors of committee members (i.e., the expected σRMS for an individual network).
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Dataset RMSmin RMSmax µRMS RMScom iter

ugriz 0.5883 0.6083 0.5972 0.5931 500

ugriz 0.5751 0.5994 0.5862 0.5812 1000

Cug, Cgr, Cri, Ciz 0.4537 0.4607 0.4561 0.4459 500

Cug, Cgr, Cri, Ciz 0.4506 0.4526 0.4519 0.4420 1000

ugriz, Cug, Cgr, Cri, Ciz 0.5717 0.5972 0.5851 0.5793 500

ugriz, Cug, Cgr, Cri, Ciz 0.5637 0.5759 0.5715 0.5634 1000

ugriz6192 0.8169 0.8178 0.8175 0.8174 500

ugriz6192 0.8170 0.8176 0.8173 0.8171 1000

ugrizJHK 0.4870 0.4975 0.4928 0.4913 500

ugrizJHK 0.4722 0.4952 0.4834 0.4783 1000

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.4116 0.4374 0.4197 0.4048 500

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.4078 0.4431 0.4184 0.4004 1000

Table 6.5. MLP/Netlab results with 5-committees of x:10:1 net-

works. Committee results better than the mean are italicised, those

better than the best individual result (RMSmin) are bolded.

Dataset RMSmin RMSmax µRMS RMScom iter

ugriz 0.5775 0.5871 0.5839 0.5744 500

ugriz 0.5488 0.5808 0.5628 0.5469 1000

Cug, Cgr, Cri, Ciz 0.4456 0.4522 0.4482 0.4435 500

Cug, Cgr, Cri, Ciz 0.4374 0.4419 0.4403 0.4335 1000

ugriz, Cug, Cgr, Cri, Ciz 0.5445 0.5864 0.5733 0.5630 500

ugriz, Cug, Cgr, Cri, Ciz 0.5277 0.5741 0.5572 0.5429 1000

ugriz6192 0.8165 0.8168 0.8167 0.8166 500

ugriz6192 0.8162 0.8167 0.8165 0.8164 1000

ugrizJHK 0.4870 0.4936 0.4901 0.4869 500

ugrizJHK 0.4688 0.4933 0.4799 0.4742 1000

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.4057 0.4209 0.4130 0.3963 500

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.3854 0.4055 0.3978 0.3789 1000

Table 6.6. MLP/Netlab results with 5-committees of x:20:1 networks.
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Dataset RMSmin RMSmax µRMS RMScom iter

ugriz 0.5700 0.6023 0.5855 0.5783 500

ugriz 0.5399 0.5798 0.5635 0.5538 1000

Cug, Cgr, Cri, Ciz 0.4409 0.4491 0.4448 0.4402 500

Cug, Cgr, Cri, Ciz 0.4366 0.4393 0.4381 0.4323 1000

ugriz, Cug, Cgr, Cri, Ciz 0.5412 0.5693 0.5598 0.5527 500

ugriz, Cug, Cgr, Cri, Ciz 0.5131 0.5486 0.5316 0.5194 1000

ugriz6192 0.8165 0.8172 0.8169 0.8167 500

ugriz6192 0.8165 0.8174 0.8170 0.8168 1000

ugrizJHK 0.4819 0.4990 0.4919 0.4871 500

ugrizJHK 0.4725 0.4943 0.4830 0.4760 1000

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.3997 0.4335 0.4105 0.3916 500

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.3945 0.4181 0.4054 0.3808 1000

Table 6.7. MLP/Netlab results with 5-committees of x:40:1 networks.

Dataset RMSmin RMSmax µRMS RMScom iter

ugriz 0.5608 0.5873 0.5796 0.5750 500

ugriz 0.5482 0.5589 0.5525 0.5477 1000

Cug, Cgr, Cri, Ciz 0.4431 0.4514 0.4467 0.4415 500

Cug, Cgr, Cri, Ciz 0.4345 0.4421 0.4381 0.4327 1000

ugriz, Cug, Cgr, Cri, Ciz 0.5481 0.5909 0.5678 0.5634 500

ugriz, Cug, Cgr, Cri, Ciz 0.5215 0.5438 0.5326 0.5277 1000

ugriz6192 0.8166 0.8169 0.8168 0.8167 500

ugriz6192 0.8167 0.8170 0.8168 0.8168 1000

ugrizJHK 0.4779 0.4942 0.4864 0.4822 500

ugrizJHK 0.4682 0.4751 0.4717 0.4680 1000

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.4094 0.4438 0.4201 0.4055 500

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.3905 0.4521 0.4122 0.3878 1000

Table 6.8. MLP/Netlab results with 5-committees of x:100:1 net-

works. Note the slight increase in RMScom over all the datasets

including colours C.
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In a majority of cases, the committees produced results better even than the best

performing individual network.

The RMS errors over some datasets are seen to increase between the x:40:1

and the x:100:1 networks for both 500 and 1,000 iterations. However, if this slight

increase in error were attributable to overfitting (memorisation of the training data

with the larger hidden layer), errors over these datasets would probably also increase

between their 500th and 1,000th iterations. Since none of this error increase is

observed, we can conclude that no major overfitting has likely taken place up to

1,000 training iterations.

We have intentionally left in a ugriz6192 dataset that has failed to train prop-

erly (owing to the same unlucky distribution into training and test sets described

in §6.4.1). This particular distribution frustrated learning over all MLP network

architectures, and will do likewise with RBFN architectures in §7.4. The training

and test sets could be reassigned, however, as was done to achieve better results

in §6.4.1. The significant improvement yielded by adding the JHK magnitudes to

the ugriz6192 dataset is best illustrated in Tables 6.1–6.4.

We note also the superiority of nearly all the ANNz results to those of MLPs in

Netlab. As the training algorithms for ANNz and MLP/Netlab are nearly identical

(except for their quasi-Newton vs. scaled conjugate gradient methods for weight

optimisation and ANNz ’s minimisation of error over the validation set), and as we

do not observe any signs of significant overfitting, we might conclude that ANNz ’s

use of a validation set has allowed it to generalise much more efficaciously than

MLP/Netlab. This is to say that, by training over a known training set yet mea-

suring error over an unseen validation set, ANNz has more closely approximated

the ‘true’ functional relationship between photometric measurements/colours and

(spectroscopic) redshift.

6.4.3. Analysis. Figure 6.2 shows a typical zphot-zspec plot, with systematic

deviations that are also areas of ‘catastrophic failure’ (having very high ∆z). To

better understand the source of these deviations, we look at Figure 6.3, which

demonstrates that σy (deviation due to photometric noise; see §6.2.1) is not highly

correlated with zspec; accordingly, the majority of the error relative to zspec is due

to the inability of our ANNs to learn the colour-redshift relation. This ∆z error

relative to zspec is plotted in Figure 6.4, which indicates that error is much higher

at specific redshifts; the astrophysical explanation for this finding is put forward in

§8.2.
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Figure 6.2. zphot vs. zspec for ugriz, 5:10:1, ANNz. σRMS is 0.4241.

Figure 6.3. Photometric deviation σy vs. zspec for ugriz, 5:10:1,

ANNz. RMSnoise is 0.1752.
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Figure 6.4. ∆z vs. zspec for ugriz, 5:10:1, ANNz.

Figure 6.5. zphot vs. zspec for ugriz6192, 5:10:1, ANNz. σRMS is 0.4940.
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Figure 6.6. zphot vs. zspec for ugrizJHK, 8:10:1, ANNz. σRMS is 0.3718.

Figures 6.5 and 6.6 present zphot-zspec plots for ugriz6192 and ugrizJHK, for

comparison to Figure 6.2. The reduction of dataset size from 46,420 to 6,192 over

the ugriz filters creates a noticeable dispersion in the zphot predictions in Figure

6.5. (Notice that the familiar systematic deviations are still manifest in the smaller

ugriz6192 dataset.) However, once JHK filters are added, σRMS drops noticeably

(Figure 6.6), and even some of the catastrophic failure is tempered.

Figure 6.7 demonstrates the failed learning of the ugriz6192 dataset that was

poorly distributed into training and test sets. The majority of ugriz magnitudes

that were matched to available JHK magnitudes had corresponding zspec values in

the interval (0, 2). As this was a highly problematic interval in the colour-redshift

relation, it is unsurprising that our MLP failed to learn the data properly; what

is surprising is the degree of its failure. The σRMS between zphot and zspec over

ugriz6192 for a network that output only values of zphot = 1 would be 0.8162; the

network in Figure 6.7 achieved σRMS = 0.8168. An investigation of the degeneracy

in the colour-redshift relation in the interval (0, 2) is carried out in §8.2.
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Figure 6.7. zphot vs. zspec for ugriz6192, 5:100:1, MLP/Netlab,

after 1,000 iterations. The network failed to learn the given dataset

over training, and so suggests zphot values closely distributed about

unity. σRMS is 0.8168.



CHAPTER 7

Radial Basis Function Networks for Photo-z

Estimation

Similar in structure and representational ability [9, p. 168] to ANNs, radial

basis function networks (RBFNs) have some important advantages over ANNs, yet

are not as widely considered in the astrophysical literature.1

The most obvious feature that RBFNs share with ANNs is their network struc-

ture: an RBFN is basically identical in form to a two-layer MLP except for its

differing activation functions in the hidden layer (see §7.1). An RBFN with N hid-

den units is able to produce a smooth function that can precisely fit N data points

in a training set and can interpolate between the points. However, in our applica-

tion, we want to approximate the underlying function generating our training data

and account for noisy measurements [9, p. 167]; we will sacrifice some accuracy in

fitting training data in order to maintain the generalisation ability of our network.

Accordingly, we will use far fewer hidden units than training data points, as in an

ANN.

7.1. Radial Basis Functions

The heart of an RBFN is, predictably, the radial basis function (RBF), used

as the activation function in the hidden layer of an RBFN. For an RBFN with M

inputs and N hidden units, an RBF is a function φn(·) centred at an M -dimensional

basis vector µn that varies only with the Euclidean distance (in M -space) between

the input vector x and the basis vector µn [10, p. 299]. Thus, the output of an

individual hidden-layer neuron in an RBFN is in the form2 φn(x) = φ(‖x − µn‖)

where φ(·) is one of the kernel functions defined below.

The kernel functions (weighted about a fixed centre) φ that we use with our

basis functions (forming bases of which network outputs are linear combinations)

1However, cf. [42] and [43], where they are referred to as ‘kernel methods’.
2The notation is our own, varying slightly from those of [9], [10], [33], [18], [43], and [42]:

we mean to convey more clearly that the RBF φn(x) is really a parameterised activation function

of the two variables x and µn (the fixed parameter), while φ(x) is a general kernel function.

58
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φn are the Gaussian3

(7.1) φ(x) = e−(x2/2σ2)

and the thin-plate spline function4

(7.2) φ(x) = x2 ln(x).

Note that hyperspherical (radially symmetric) Gaussians are used for simplicity;

however, these Gaussians can be generalised to better fit the training data with

hyperelliptical basis functions [9, p. 35]. Hyperelliptical basis functions are partic-

ularly useful in the presence of irrelevant input variables [9, p. 184] to overcome

the curse of dimensionality.

7.2. RBFN Training

Bishop (1995) notes, “there are many potential applications for neural networks

where unlabelled input data [without targets] is plentiful, but where labelled data is

in short supply” [9, p. 183]. This is precisely the case with the redshift estimation

problem: photometric ugriz data are readily available and easily acquired, but

proper zspec measurements are few and will continue to lag behind by orders of

magnitude [6]. While there are many ways to train an RBFN, the following two-

stage training procedure is well suited to dealing with the stated problem. The

unlabelled ugriz data can be used for unsupervised learning as described below,

while the smaller amount of zspec-labelled data can be used in the second stage of

training. Contrast this to the training procedure of an ANN, then, which will only

be able to utilise the smaller, labelled subset of data.

7.2.1. Unsupervised Parameter Optimisation. In an RBFN, basis func-

tion parameters and second-layer weights could be optimised like those of an ANN

with an iterative, supervised training algorithm; however, implementations (like

ours) that sacrifice optimal accuracy in favour of computational efficiency will make

use of unsupervised learning techniques for part of the RBFN training process.

The two layers in our RBFNs are trained separately; as our networks have fewer

basis functions than training data points, the centres µn and widths σn of the basis

functions φn in the first layer are determined in advance with an algorithm that

is blind to the target data of the training set. This means that such an algorithm

3For the Gaussian, the width parameter σn is fixed in advance along with the centre µn.
4The spline function φ(x) = x4 ln(x) was also tested, but it produced results less accurate

than those of the thin-plate spline function in all tests.
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needs only the training data inputs to fix the first-layer parameters; centres and

widths are calculated to represent the estimated mixture density [9, p. 59] of the

input vectors.

7.2.2. Linear Determination of Weights and Biases. The second-layer

weights in our RBFNs are then calculated by a supervised method, but they are not

iteratively optimised as in an ANN. Instead, the output values of the training data

are used, along with the newly fixed centres and widths of the basis functions, to

directly compute the second-layer weights and biases with a set of linear equations

[9, p. 171]. As this is a linear problem, it is considerably less computationally

intensive than the non-linear optimisation problems in ANN training, for example.

7.3. Implementation of RBFNs in Netlab

Our implementation of RBFNs is in Netlab, the MATLAB R© toolbox. As men-

tioned in §7.1, we use a hyperspherical Gaussian and the thin-plate spline function

as our hidden-layer activation functions. Our output is linear, and training is done

in two stages as described in §7.2.

The first training stage uses the ‘expectation-maximisation’ (EM) algorithm to

centre the basis functions. Generally speaking, the EM algorithm estimates the N

basis function centres as though the input data were composed of N hyperspherical

Gaussian distributions mixed amongst each other in the input space [10, pp. 435ff.].

The widths of the Gaussians are then set to some appropriate value; we use the

square of the maximum inter-centre Euclidean distance. In the second training

stage, the second-layer weights and biases are quickly calculated from the first-

layer parameters by minimising sum-of-squared error over the training examples,

following a simple matrix algebraic result [9, p. 92].

It happens that the EM algorithm is initialised with randomised, normally

distributed parameters, and so its outputs, the basis function parameters, are

thereby subject to the same normal variance as ANNs in Chapter 6, §6.2.2. Addi-

tionally, the linear calculation of second-layer weights and biases is deterministic,

so the weights—and therefore the zphot outputs—of the RBFN are normally dis-

tributed along with the first-layer parameters. Accordingly, we can use committees

of RBFNs in the same way that we use committees of ANNs, taking the mean of

the committee members’ outputs as our final zphot value.
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Figure 7.1. zphot vs. zphot for two individual 5:100:1 TPS RBFNs

over ugriz.

7.4. Results and Analysis

As in §6.4.2, we present minimum/maximum/mean/committee RMS results.

All RBFNs were trained with 100 iterations of the EM algorithm for centring the

basis functions. Again, as in §6.4.2, our committees regularly achieve lower RMS

errors than the expected individual network RMS, seen in Tables 7.1–7.8. Figure

7.1 illustrates the expected Gaussian deviation between committee members, as

discussed in §6.2.2.

The difference in prediction accuracy between RBFNs with Gaussian activa-

tions and those with thin-plate-spline (TPS) is often considerable. Although neither

Gaussian nor TPS activations are demonstrably superior for any given network ar-

chitecture, some trends are observed when considering individual datasets.

Looking at committee σRMS results, the RBFNs with Gaussian activations

achieve consistently lower errors than those with TPS activations over the ugriz

and ugrizJHK datasets. The opposite is true for the [Cug, Cgr, Cri, Ciz] dataset,

and comparable results are achieved with [ugriz, Cug, Cgr, Cri, Ciz]. Curiously,

over the [Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK ] dataset, Gaussians yield significantly

higher accuracies in 7:10:1 and 7:20:1 networks, but TPS performs substantially
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Dataset RMSmin RMSmax µRMS RMScom

ugriz 0.5717 0.5790 0.5750 0.5720

Cug, Cgr, Cri, Ciz 0.5526 0.5562 0.5548 0.5533

ugriz, Cug, Cgr, Cri, Ciz 0.5709 0.5776 0.5757 0.5731

ugriz6192 0.8165 0.8169 0.8167 0.8166

ugrizJHK 0.5081 0.5116 0.5099 0.5085

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.5121 0.5221 0.5169 0.5142

Table 7.1. RBFN results with 5-committees of x:10:1 networks,

using the Gaussian activation function with 100 iterations of the

EM algorithm for basis centring. Committee results better than

the mean are italicised, those better than the best individual

result (RMSmin) are bolded.

Dataset RMSmin RMSmax µRMS RMScom

ugriz 0.6011 0.6213 0.6120 0.6077

Cug, Cgr, Cri, Ciz 0.4814 0.4973 0.4860 0.4809

ugriz, Cug, Cgr, Cri, Ciz 0.5884 0.5942 0.5918 0.5896

ugriz6192 0.8164 0.8175 0.8168 0.8167

ugrizJHK 0.5217 0.5356 0.5285 0.5256

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.5745 0.5932 0.5857 0.5740

Table 7.2. RBFN results with 5-committees of x:10:1 networks,

using the thin-plate-spline activation function.

Dataset RMSmin RMSmax µRMS RMScom

ugriz 0.5696 0.5784 0.5737 0.5712

Cug, Cgr, Cri, Ciz 0.5527 0.5569 0.5551 0.5524

ugriz, Cug, Cgr, Cri, Ciz 0.5660 0.5765 0.5703 0.5684

ugriz6192 0.8164 0.8170 0.8167 0.8165

ugrizJHK 0.5080 0.5092 0.5086 0.5079

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.5046 0.5234 0.5134 0.5091

Table 7.3. Gaussian RBFN results with 5-committees of x:20:1 networks.
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Dataset RMSmin RMSmax µRMS RMScom

ugriz 0.6052 0.6200 0.6134 0.6105

Cug, Cgr, Cri, Ciz 0.4821 0.4984 0.4859 0.4812

ugriz, Cug, Cgr, Cri, Ciz 0.5876 0.5979 0.5903 0.5879

ugriz6192 0.8157 0.8173 0.8164 0.8163

ugrizJHK 0.5218 0.5312 0.5266 0.5248

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.5244 0.6113 0.5724 0.5591

Table 7.4. TPS RBFN results with 5-committees of x:20:1 networks.

Dataset RMSmin RMSmax µRMS RMScom

ugriz 0.5477 0.5555 0.5503 0.5479

Cug, Cgr, Cri, Ciz 0.5326 0.5508 0.5378 0.5340

ugriz, Cug, Cgr, Cri, Ciz 0.5367 0.5534 0.5458 0.5427

ugriz6192 0.8176 0.8223 0.8196 0.8193

ugrizJHK 0.4811 0.4886 0.4854 0.4832

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.5133 0.5473 0.5305 0.5263

Table 7.5. Gaussian RBFN results with 5-committees of x:40:1 networks.

Dataset RMSmin RMSmax µRMS RMScom

ugriz 0.5734 0.5834 0.5797 0.5758

Cug, Cgr, Cri, Ciz 0.4568 0.4649 0.4605 0.4561

ugriz, Cug, Cgr, Cri, Ciz 0.5580 0.5652 0.5621 0.5569

ugriz6192 0.8177 0.8198 0.8187 0.8183

ugrizJHK 0.5017 0.5114 0.5057 0.5015

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.4778 0.4946 0.4890 0.4825

Table 7.6. TPS RBFN results with 5-committees of x:40:1 networks.

better in 7:40:1 and 7:100:1 networks. In fact, the Gaussian RBFNs in the 7:100:1

networks produce outliers of sufficient magnitude to raise µRMS to 0.9940, and

one network failed to learn the data at all (Figure 7.2). The 5-committee for these

networks, however, is seen to reduce RMScom to 0.8141. (A 5-committee calculating

the median instead of the mean over these networks’ outputs yielded an RMScom of

0.8263; some outliers—even zphot ∼ 30—were consistently produced by committee

members, as seen in Figure 7.3.)
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Dataset RMSmin RMSmax µRMS RMScom

ugriz 0.5220 0.5441 0.5295 0.5216

Cug, Cgr, Cri, Ciz 0.5232 0.5650 0.5400 0.5247

ugriz, Cug, Cgr, Cri, Ciz 0.5138 0.5302 0.5208 0.5186

ugriz6192 0.8278 0.8539 0.8372 0.8359

ugrizJHK 0.4551 0.4674 0.4624 0.4555

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.9373 1.0595 0.9940 0.8141

Table 7.7. Gaussian RBFN results with 5-committees of x:100:1 networks.

Dataset RMSmin RMSmax µRMS RMScom

ugriz 0.5226 0.5317 0.5290 0.5232

Cug, Cgr, Cri, Ciz 0.4366 0.4385 0.4379 0.4352

ugriz, Cug, Cgr, Cri, Ciz 0.4841 0.4959 0.4878 0.4834

ugriz6192 0.8256 0.8276 0.8261 0.8441

ugrizJHK 0.4640 0.4713 0.4669 0.4605

Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK 0.4040 0.4181 0.4096 0.4014

Table 7.8. TPS RBFN results with 5-committees of x:100:1 networks.

All 80 RBFNs produced failed to learn the ugriz6192 dataset with its orig-

inal training/test set distribution, which was left as-is. The TPS RBFNs with

100 hidden units (see Figure 7.4) showed the most deviation from outputting only

zphot = 1, and significantly more deviation than MLPs showed in Figure 6.7.

Finally, Figures 7.5 and 7.6 illustrate two RBFNs that, while not as accurate as

the ANNs of Figures 6.2 and 6.6, are highly similar in form. This indicates that they

suffer from the similar difficulties in learning and generalising on the ugrizJHK

data; it also recalls their rough equivalence in representational capability.

The general symmetry for mild outliers at ∆z ∼ [1, 2] about the line zphot =

zspec in Figures 7.6 and 6.6 brings more clearly to light the degeneracy suggested

by Richards et al. (2001b) [32] and Weinstein et al. (2004) [44]: certain quasars

are close matches for two or more redshifts, and the zphot-zspec relation illustrates

this confusion by plotting them symmetrically about zphot = zspec. §8.2 discusses

this degeneracy in detail.
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Figure 7.2. zphot vs. zspec for a 7:100:1 Gaussian RBFN over

[Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK ]. σRMS is only 1.0595—not

dissimilar to other networks in the same committee that converged

but had large outliers.
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Figure 7.3. zphot vs. zphot for two individual 7:100:1 Gaussian

RBFNs over [Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK ]. Note the large

outliers consistently predicted by both RBFNs.
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Figure 7.4. zphot vs. zspec for the 5-committee of 5:100:1 TPS

RBFNs over ugriz6192. σRMS is 0.8441.

Figure 7.5. zphot vs. zspec for the 5-committee of 5:100:1 Gauss-

ian RBFNs over ugriz. σRMS is 0.5216.
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Figure 7.6. zphot vs. zspec for the 5-committee of 7:100:1 TPS

RBFNs over [Cug, Cgr, Cri, Ciz, CzJ , CJH , CHK ]. σRMS is 0.4014,

and 69.5% of objects are predicted to ∆z ≤ 0.3.



CHAPTER 8

Discussion

8.1. Systematic Errors

In presenting a survey of network-based learning methods for photometric red-

shift estimation, we have done very little to minimise RMS errors by way of param-

eter optimisation. Still, we have achieved σRMS values of 0.3557 and 0.4014 with

ANNs and RBFNs, yielding ∆z values within 0.3 for 76.2% and 69.5% of quasars,

respectively. These results are comparable to recent standard results in the litera-

ture ([27], [44], [4], [46]), but they do not compare to the latest results of Ball et

al. (to appear), who are able to select a subset of quasars whose redshifts may be

estimated with significantly greater accuracy (improving σRMS from 0.343 to 0.117,

and the percentage of quasars within ∆z < 0.3 from 79.8% to 99.3%.) [6].1

All published results suffer from the same systematic errors at certain values of

zspec, however. In fact, with hidden layers of up to 100 units, we were unable even to

memorise our training sets after 3,000 training iterations: testing over our training

sets yielded the same deviations and regions of catastrophic failure in our zphot-zspec

relation. This indicates some degeneracy inherent to the training sets; i.e., some

sets of photometric magnitudes and colours correspond to multiple spectroscopic

redshifts.

8.2. Colour-Redshift Relation and Spectral Lines

As discussed in §5.5, the colour-redshift relation (CZR) is of primary impor-

tance in estimating redshift from photometric measurements. Figure 8.1 [32] plots

the CZR for the colours Cug, Cgr, Cri, and Ciz. Richards et al. (2001a) describe

in detail the features of the CZR, and find that almost all of the structure can be

attributed to emission lines moving in and out of the ugriz filter ranges at different

redshifts [31]. This is consistent with the observations of Ball et al. (to appear)

1Ball et al. (to appear) use statistical techniques that amount to excluding quasars that are

near CZR degeneracies in colour-colour space. They exclude 61.1% of their dataset, but, as this

is not even an order-of-magnitude loss and they have managed to remove nearly all catastrophics,

their result is exceptional.
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Figure 8.1. Colour-redshift plots of SDSS quasars indicating me-

dian colour as a function of redshift (solid curve) and one-sigma er-

rors (dashed curves). The relation is degenerate in colour-redshift

space if it is not one-to-one. From Richards et al. (2001b) [32],

adapted from [31].

who demonstrate that major deviations in the zphot-zspec relation fall at redshifts

where important emission lines cross SDSS filter boundaries (Figure 8.2) [6].2

Further, as illustrated in Figures 8.1 and 8.3, there is significant degeneracy

in the CZR, indicating that it is impossible to predict redshift for all quasars as a

function of four colours alone. Note that higher-quality photometry will not solve

the problem: while some level of photometric certainty is needed to approach the

CZR, recall from §6.2.1 that we were able to deviate our inputs to an ANN by

the estimated photometric noise to find the resulting change σy in zphot. As seen

2Cf. also [4] for redshift values at which important emission lines cross ugriz transitions.
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Figure 8.2. zphot-zspec plots indicating where the five brightest

emission lines cross ugriz filters. From Ball et al. (to appear) [6].

in Figure 6.3, photometric noise is not responsible for the majority of the error

∆z. Therefore, as Way & Srivastava (2006) suggest for empirical reasons [43],

photometry improvements alone will not overcome the CZR degeneracy.

In order to break the degeneracy, we need additional input parameters. A

demonstration of the improvement in accuracy were the degeneracy to be broken

is shown in Figure 8.4. If we had some way of segregating z < 1 quasars, 1 < z < 2

quasars, and z > 2 quasars from each other (say, by using non-photometric data or

more specialised filters for detecting specific spectral lines as suggested in [6]3), a

neural network training on this additional information might yield results around

σRMS = 0.1283, with 97.4% of objects within ∆z ≤ 0.3. Segregation at z = 2

showed most of the usual systematic deviations (Figure 8.5), confirming that the

major source of errors is a degeneracy in 0 < z < 2.

8.3. Other Learning Techniques for Photometric Redshift Estimation

Other potential improvements to our methods could include the use of cross-

variance to avoid overfitting a training set, or weighting in committees of networks

[9, p. 366]. Photometric redshift estimation has also been attempted using support

vector machines (SVMs) ([41] and [42]), GAs [28], and random forests [12]. We

3Cf. also Hatziminaoglou et al. (2000) [19], who point out the deficiencies of wide-band

filters for quasars.
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Figure 8.3. Plots of the CZR in colour-colour space, with one-

sigma error ellipsoids for certain (labelled) redshifts. The CZR

track is traced by the curves. From Weinstein et al. (2004) [44].

tested SVMs on our datasets using the SVMTorch II facility [14],4 but found higher

errors in all tests. Still, SVMs are attractive in that they can add extra input

parameters with near-linear computational overhead [41] and limited dilution of

accuracy in the presence of irrelevant data with some SVM algorithms [18, p. 385].

Computational considerations should also be taken into account: Hastie et al.

(2001) show that, for N training data, p input variables, W weights, L training

iterations, M basis functions, and m support vectors, ANNs require O(NpML)

operations [18, p. 367], RBFNs require O(NM2 + M3) [18, p. 190], and SVMs

tend to require O(m3 +mN +mpN) [18, p. 405].

4SVMTorch II is available at http://www.idiap.ch/machine learning.php?

content=Torch/en SVMTorch.txt. We used a Gaussian kernel with a width of 1.0 and er-

ror pipes of 0.01 and 0.001.
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Figure 8.4. zphot vs. zspec for three separate 5-committees of

4:10:1 MLPs in Netlab, trained on datasets segregated at z = 1

and z = 2 up to 500 iterations. σRMS is 0.1283, and 97.4% of

objects fall within ∆z ≤ 0.3.

Figure 8.5. zphot vs. zspec for two 5-committees of 4:10:1 MLPs,

segregated at z = 2. σRMS is 0.2857, and 95.8% have ∆z ≤ 0.3.





Conclusion



CHAPTER 9

Implications of Research and Future Directions

Part I of this dissertation demonstrated that canonical machine learning tech-

niques could be adapted to solve a non-trivial astrophysical problem with only

minor modifications. The same techniques could be used in a reverse manner, to

approximate the mechanical formulae governing the behaviour of an observed sys-

tem with known physical parameters. Alternatively, the problem solved could be

generalised by using more precise, relativistic physical calculations to extend to the

modelling of binary star systems and the search for other planetary star systems.

Another interesting extension would be to model simultaneously the orbits of

several moons with GAs and PSO: in principle, not all moons would be visible

within a certain window or from a certain point of view (they would occasionally

be obscured by or pass in front of the major planet), and the moons would not be

‘labelled’ individually in each frame.1 Still, a GA could begin to model the sys-

tem by using a variable number of satellites (represented in each organism) equal

to or greater than the maximum number of moons observed in any one frame,

with the satellites ordered within the organism by their semi-major axis distance

a. Crossover between two organisms with differing numbers of satellites could in-

teract only those satellites whose a values are most similar. Mutation could also

introduce or remove new satellites to an organism, and fitness could be measured at

each time step by summing the minimum Euclidean distances between estimated

moon positions and observed locations, using the location of the major planet as

a moon location if there are more satellites represented in the organism than ob-

served in the frame. This would allow the inclusion of frames in which some moons

are obscured, and would also penalise organisms that represented more satellites

than were present in the physical system. For PSO, multiple distinct swarms could

be run simultaneously on the data, with some use of hyperspheres or hypercubes

(an enforced minimum distance) in parameter space to prevent the swarms from

converging on the same set of orbital elements. Such an extension would require

1This would be similar to using a set of observations like Galileo’s (Figure 2.1) to automati-

cally determine the total number of moons and the orbital elements of each.
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significantly greater computational resource,2 but this only recalls the growing need

for more parallelisable and distributed algorithms for common problems in astro-

physical research.

Part II demonstrated that trivial applications of machine learning techniques

can yield results comparable to the most advanced applications of traditional tech-

niques in photometric redshift estimation. As mentioned in earlier chapters, the

improvement of these learning techniques—for quasars in particular—will greatly

assist research in cosmology [32] and the large-scale structure of the universe [47].

It would be useful to determine the relationship between photometric redshift ac-

curacy and quasar magnitude, as the efficient estimation of faint quasar redshifts

would assist in studying quasar evolution [32]. It would also be interesting to in-

vestigate in more detail the statistical properties of the zphot-zspec relation and the

CZR degeneracy. The impressive result of Ball et al. (to appear) [6] in selecting

quasars according to properties of their zphot probability density functions indi-

cates that there may well be more statistical learning techniques of use in solving

the CZR problem.

Improvements may also be made by calculating the Jacobian matrix for RBFNs

as in §6.2.1 and comparing its zphot deviations σy with those obtained by ANNz, in-

vestigating the relationship between computational expense and ∆z error as regards

partially unsupervised RBFNs and (fully supervised) ANNs, incorporating X-ray

and radio flux measurements, and experimenting with different activation functions

and/or describing their distinct behaviours. However, aside from reducing ∆z er-

ror and ensuring predictable confidence intervals, as not all science applications

require minimal redshift errors [32], serious consideration should also be given to

the unsupervised learning properties of RBFNs insofar as they may be of particular

advantage in large sky survey science in the future.

2Indeed, the primary reason we have not tested multiple-satellite modelling is that using a

vector (a variable-length array) of vectors caused our GA implementation to run remarkably

slowly, especially considering the expected increase in computational time that modelling multiple

satellites is likely to require.



APPENDIX A

Source Code: Modelling with GAs and PSO

A.1. mlastro.cpp

// mlastro.cpp

#include "stdafx.h"

#include <stdlib.h>

#include <iostream>

#include <fstream>

#include <string>

#define _USE_MATH_DEFINES

#include <math.h>

#include <vector>

#include <time.h>

using namespace std;

#include "organism.h"

#include "particle.h"

const char* inputXYZ = "X:\\data\\2hAtlasXYZ.txt";

const double EPOCH = 2453006.0;

//2451545 for J2000.0 (Himalia), 2450464.25 for 1997 Jan 16.00 TT (Io),

//2454600 for test, 2453006 for Jan 1 04 (Atlas)

const bool LOG = true; //to turn on or off logging of stdev for convergence

const bool test = false; //if using test set

const bool taper = false; //use tapered vMAX for PSO

class observ {

public:

double time;

vector<double> x;

vector<double> y;

vector<double> satpang;

vector<char> visibility;

};

pair<double,double> keplerian(organism o, int sat, double timeInDays) {

pair<double,double> result;

result.first=0;

result.second=0;

double timeElapsed = timeInDays - EPOCH; //in days from EPOCH

timeElapsed *= 86400; //now in seconds

double M; //mean anomaly

double n; //mean motion, in radians/sec: this is an avg, for circular orbits
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//unable to represent o.a[sat]^3:

n = (double)o.mu;

n /= o.a[sat];

n /= o.a[sat];

n /= o.a[sat];

n = sqrt(n);

M = o.m0[sat] + n*timeElapsed;

//radians + (radians/s)*s, from \protect\vrule width0pt\protect\href{http://en.wikipedia.org/wiki/Mean_anomaly}{http://en.wikipedia.org/wiki/Mean_anomaly}

double E; //eccentric anomaly

E = M;

for (int i=0;i<8;i++) {

E = M + o.e[sat]*sin(E);

//from \protect\vrule width0pt\protect\href{http://en.wikipedia.org/wiki/Eccentric_anomaly}{http://en.wikipedia.org/wiki/Eccentric_anomaly}

}

double nu; //true anomaly, between -PI and PI

nu = atan(sqrt((1.+o.e[sat])/(1.-o.e[sat]))*tan(E/2.))*2;

if (nu<0) nu += 2*M_PI;

//putting nu between 0 and 2*PI, for theta/phi calculations in keplerian()

double rho; //distance from major body, in same units as a (metres)

rho = o.a[sat]*((1.-pow(o.e[sat],2))/(1.+(o.e[sat]*cos(nu))));

result.first = rho/1000.; //this puts it in km for simplicity’s sake

result.second = nu;

return result;

}

pair<pair<double,double>,double>

polarToXYZ(organism o,int sat,pair<double,double> polar){

pair<double,double> xy;

pair<pair<double,double>,double> result;

double x = 0,y = 0,z = 0;

double rho, phi, theta, nu;

rho = polar.first;

nu = polar.second;

double scaleTheta,scalePhi;

scaleTheta = cos(o.inclin[sat]);

scalePhi = sin(o.inclin[sat]);

theta = scaleTheta*(o.w[sat]+nu)+o.node[sat]; //should be 0 to 2*PI

phi = (M_PI/2)-scalePhi*(o.w[sat]+nu); //should be 0 to 2*PI

//convert to xyz: in same units as rho (metres, now km)

x = rho*sin(phi)*cos(theta);

y = rho*sin(phi)*sin(theta);

z = rho*cos(phi);

xy.first = x;

xy.second = y;

result.first = xy;

result.second = z;
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return result;

}

void outputOrganisms(vector<organism>& o) {

ofstream orgs;

orgs.open("X:\\data\\organisms.txt");

char timeStr[9];

_strtime_s(timeStr);

orgs << timeStr << endl << endl;

for (unsigned int i=0;i<o.size();i++) {

orgs << i+1 << "." << o[i].satellites << endl;

orgs << o[i].fitness << endl;

orgs << o[i].a[0] << "," << o[i].e[0] << "," << o[i].inclin[0] << endl;

orgs << o[i].node[0] << "," << o[i].w[0] << "," << o[i].m0[0];

orgs << endl << endl;

}

orgs.close();

}

double rankFitnessXYZ(vector<organism>& o, const int observations) {

vector<pair<double,double>> X(observations),Y(observations),Z(observations);

ifstream input;

ofstream best;

ofstream worst;

string temp;

input.open(inputXYZ);

while (!input.eof()) {

getline(input,temp);

if (temp.compare("$$SOE")==0) {

break;

}

}

//file should be at EOF or at $$SOE here

int count = 0;

while ((!input.eof())&&(input.peek()!=’$’)) {

input >> X[count].first;

if (!test) getline(input,temp);

input >> X[count].second >> Y[count].second >> Z[count].second;

getline(input,temp);

Y[count].first = X[count].first;

Z[count].first = X[count].first;

count++;

}

input.close();

double timeInDays;

double bestFitness = 0;

double worstFitness = 1;

int b,w;

char timeStr[9];

for (unsigned int i=0;i<o.size();i++) {

//iterating over all the organisms in the population

o[i].fitness = 0;

for (int j=0;j<observations;j++) {

timeInDays = X[j].first;
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pair<pair<double,double>,double> xyz=

polarToXYZ(o[i],0,keplerian(o[i],0,timeInDays));

o[i].fitness += pow(xyz.first.first-X[j].second,2) +

pow(xyz.first.second-Y[j].second,2) + pow(xyz.second-Z[j].second,2);

}

o[i].fitness /= observations; //to normalise

o[i].fitness = 1/o[i].fitness;

if (o[i].fitness > bestFitness) {

bestFitness = o[i].fitness;

b = i;

}

if (o[i].fitness < worstFitness) {

worstFitness = o[i].fitness;

w = i;

}

}

_strtime_s(timeStr);

ofstream genfitness;

genfitness.open("X:\\data\\genfitness.txt", ios::app);

genfitness.setf(ios::scientific);

cout << "Best fitness is " << bestFitness << ".\t";

if (LOG) genfitness << bestFitness << "\t";

else genfitness << "Best fitness is " << bestFitness << ".\t";

cout << "Worst is " << worstFitness << ".\t" << timeStr << endl;

if (LOG) genfitness << worstFitness << "\t" << timeStr << "\t";

else genfitness << "Worst is " << worstFitness << ".\t" << timeStr << endl;

genfitness.close();

best.open("X:\\data\\best.txt");

worst.open("X:\\data\\worst.txt");

best << timeStr << endl << "Best fitness = " << bestFitness << endl;

worst << timeStr << endl << "Worst fitness = " << worstFitness << endl;

//right now this only writes the first elements

best << "a:\t" << o[b].a[0] << "\ne:\t" << o[b].e[0] << "\ni:\t";

best << o[b].inclin[0] << "\nnode:\t" << o[b].node[0] << "\nw:\t";

best << o[b].w[0] << "\nm0:\t" << o[b].m0[0] << endl;

worst << "a:\t" << o[w].a[0] << "\ne:\t" << o[w].e[0] << "\ni:\t";

worst << o[w].inclin[0] << "\nnode:\t" << o[w].node[0] << "\nw:\t";

worst << o[w].w[0] << "\nm0:\t" << o[w].m0[0] << endl;

best.close();

worst.close();

return bestFitness;

}

pair<organism,organism> straightCrossover(organism o1, organism o2) {

pair<organism,organism> o;

o.first = o1;

o.second = o2;

double crossoverLevel = 0.25;

double aR,eR,iR,nodeR,wR,m0R; //these are randoms between 0 and 1

aR = (double)rand()/32768;

eR = (double)rand()/32768;

iR = (double)rand()/32768;
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nodeR = (double)rand()/32768;

wR = (double)rand()/32768;

m0R = (double)rand()/32768;

long long itemp;

double dtemp;

if (aR < crossoverLevel) {

itemp = o.first.a[0];

o.first.a[0] = o.second.a[0];

o.second.a[0] = itemp;

}

else if (eR < crossoverLevel) {

dtemp = o.first.e[0];

o.first.e[0] = o.second.e[0];

o.second.e[0] = dtemp;

}

else if (iR < crossoverLevel) {

dtemp = o.first.e[0];

o.first.e[0] = o.second.e[0];

o.second.e[0] = dtemp;

}

else if (nodeR < crossoverLevel) {

dtemp = o.first.inclin[0];

o.first.inclin[0] = o.second.inclin[0];

o.second.inclin[0] = dtemp;

}

else if (wR < crossoverLevel) {

dtemp = o.first.node[0];

o.first.node[0] = o.second.node[0];

o.second.node[0] = dtemp;

}

else if (m0R < crossoverLevel) {

dtemp = o.first.m0[0];

o.first.m0[0] = o.second.m0[0];

o.second.m0[0] = dtemp;

}

return o;

}

void mutate(organism& o) {

organism mutated;

double mutateLevel = 0.15;

mutated.create(o.satellites);

double aR,eR,iR,nodeR,wR,m0R; //these are randoms between 0 and 1

aR = (double)rand()/32768;

eR = (double)rand()/32768;

iR = (double)rand()/32768;

nodeR = (double)rand()/32768;

wR = (double)rand()/32768;

m0R = (double)rand()/32768;

double mutatePercent;

mutatePercent = (double)rand()/32768/2 - 0.25 + 1;

//between -.25 + 1 and .25 + 1 = .75 and 1.25
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if (aR < mutateLevel) o.a[0] *= mutatePercent;

//a doesn’t have strict bounds (besides >0)

if (eR < mutateLevel) {

o.e[0] *= mutatePercent;

while (o.e[0]>=1) o.e[0]--;

}

if (iR < mutateLevel) {

o.inclin[0] *= mutatePercent;

while (o.inclin[0]>=2*M_PI) o.inclin[0] -= 2*M_PI;

}

if (nodeR < mutateLevel) {

o.node[0] *= mutatePercent;

while (o.node[0]>=2*M_PI) o.node[0] -= 2*M_PI;

}

if (wR < mutateLevel) {

o.w[0] *= mutatePercent;

while (o.w[0]>=2*M_PI) o.w[0] -= 2*M_PI;

}

if (m0R < mutateLevel) {

o.m0[0] *= mutatePercent;

while (o.m0[0]>=2*M_PI) o.m0[0] -= 2*M_PI;

}

if (aR < mutateLevel/2) o.a[0] = mutated.a[0];

if (eR < mutateLevel/2) o.e[0] = mutated.e[0];

if (iR < mutateLevel/2) o.inclin[0] = mutated.inclin[0];

if (nodeR < mutateLevel/2) o.node[0] = mutated.node[0];

if (wR < mutateLevel/2) o.w[0] = mutated.w[0];

if (m0R < mutateLevel/2) o.m0[0] = mutated.m0[0];

}

pair<double,double> keplerian(particle p, double timeInDays) {

pair<double,double> result;

result.first=0;

result.second=0;

double timeElapsed = timeInDays - EPOCH; //in days from EPOCH

timeElapsed *= 86400; //now in seconds

double M; //mean anomaly

double n; //mean motion, in radians/sec

//unable to represent p.a^3:

n = (double)p.mu;

n /= p.a;

n /= p.a;

n /= p.a;

n = sqrt(n);

M = p.m0 + n*timeElapsed;

//radians + (radians/s)*s, from \protect\vrule width0pt\protect\href{http://en.wikipedia.org/wiki/Mean_anomaly}{http://en.wikipedia.org/wiki/Mean_anomaly}

double E; //eccentric anomaly

E = M;
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for (int i=0;i<8;i++) {

E = M + p.e*sin(E);

//from \protect\vrule width0pt\protect\href{http://en.wikipedia.org/wiki/Eccentric_anomaly}{http://en.wikipedia.org/wiki/Eccentric_anomaly}

}

double nu; //true anomaly, between -PI and PI

nu = atan(sqrt((1.+p.e)/(1.-p.e))*tan(E/2.))*2;

if (nu<0) nu += 2*M_PI;

//putting nu between 0 and 2*PI, for theta/phi calculations in keplerian()

double rho; //distance from major body, in same units as a (metres)

rho = p.a*((1.-pow(p.e,2))/(1.+(p.e*cos(nu))));

result.first = rho/1000.; //this puts it in km for simplicity’s sake

result.second = nu;

return result;

}

pair<pair<double,double>,double>

polarToXYZ(particle p, pair<double,double> polar) {

pair<double,double> xy;

pair<pair<double,double>,double> result;

double x = 0,y = 0,z = 0;

double rho, phi, theta, nu;

rho = polar.first;

nu = polar.second;

double scaleTheta,scalePhi;

scaleTheta = cos(p.inclin);

scalePhi = sin(p.inclin);

theta = scaleTheta*(p.w+nu)+p.node; //should be 0 to 2*PI

phi = (M_PI/2)-scalePhi*(p.w+nu); //should be 0 to 2*PI

//convert to xyz: in same units as rho (km)

x = rho*sin(phi)*cos(theta);

y = rho*sin(phi)*sin(theta);

z = rho*cos(phi);

xy.first = x;

xy.second = y;

result.first = xy;

result.second = z;

return result;

}

void outputSwarm(vector<particle>& p) {

ofstream swarm;

swarm.open("X:\\data\\swarm.txt");

char timeStr[9];

_strtime_s(timeStr);
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swarm << timeStr << endl << endl;

for (unsigned int i=0;i<p.size();i++) {

swarm << i+1 << endl;

swarm << p[i].fitness << endl;

swarm << p[i].a << "," << p[i].e << "," << p[i].inclin << endl << p[i].node;

swarm << "," << p[i].w << "," << p[i].m0 << endl << endl;

}

swarm.close();

}

particle rankFitnessXYZ(vector<particle>& p,

const int observations, particle& pBest) {

vector<pair<double,double>> X(observations),Y(observations),Z(observations);

ifstream input;

ofstream best;

ofstream worst;

string temp;

input.open(inputXYZ);

while (!input.eof()) {

getline(input,temp);

if (temp.compare("$$SOE")==0) {

break;

}

}

//file should be at EOF or at $$SOE here

int count = 0;

while ((!input.eof())&&(input.peek()!=’$’)) {

input >> X[count].first;

if (!test) getline(input,temp);

input >> X[count].second >> Y[count].second >> Z[count].second;

getline(input,temp);

Y[count].first = X[count].first;

Z[count].first = X[count].first;

count++;

}

input.close();

double timeInDays;

double bestFitness = 0;

double worstFitness = 1;

int b,w;

char timeStr[9];

for (unsigned int i=0;i<p.size();i++) {

//iterating over all the particles in the swarm

p[i].fitness = 0;

for (int j=0;j<observations;j++) {

timeInDays = X[j].first;

pair<pair<double,double>,double> xyz =

polarToXYZ(p[i],keplerian(p[i],timeInDays));

p[i].fitness += pow(xyz.first.first-X[j].second,2)

+ pow(xyz.first.second-Y[j].second,2) + pow(xyz.second-Z[j].second,2);

}

p[i].fitness /= observations;

p[i].fitness = 1/p[i].fitness;

if (p[i].fitness > bestFitness) {

bestFitness = p[i].fitness;

b = i;

}
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if (p[i].fitness < worstFitness) {

worstFitness = p[i].fitness;

w = i;

}

}

if (bestFitness > pBest.fitness) pBest = p[b];

_strtime_s(timeStr);

ofstream genfitness;

if (LOG) {

genfitness.open("X:\\data\\genfitness.txt", ios::app);

genfitness.setf(ios::scientific);

genfitness << bestFitness << "\t";

genfitness << worstFitness << "\t" << timeStr << "\t";

genfitness.close();

}

cout << "Best fitness is " << bestFitness << ".\t";

cout << "Worst is " << worstFitness << ".\t" << timeStr << endl;

best.open("X:\\data\\best.txt");

worst.open("X:\\data\\worst.txt");

best << timeStr << endl << "Best fitness = " << bestFitness << endl;

worst << timeStr << endl << "Worst fitness = " << worstFitness << endl;

best << "a:\t" << p[b].a << "\ne:\t" << p[b].e << "\ni:\t";

best << p[b].inclin << "\nnode:\t" << p[b].node << "\nw:\t";

best << p[b].w << "\nm0:\t" << p[b].m0 << endl;

worst << "a:\t" << p[w].a << "\ne:\t" << p[w].e << "\ni:\t";

worst << p[w].inclin << "\nnode:\t" << p[w].node << "\nw:\t";

worst << p[w].w << "\nm0:\t" << p[w].m0 << endl;

best << endl << "Best so far = " << pBest.fitness << endl;

best << "a:\t" << pBest.a << "\ne:\t" << pBest.e << "\ni:\t";

best << pBest.inclin << "\nnode:\t" << pBest.node << "\nw:\t";

best << pBest.w << "\nm0:\t" << pBest.m0 << endl;

best.close();

worst.close();

return p[b]; //to aid selection process

}

int _tmain(int argc, _TCHAR* argv[]) {

const int maxObservations = 31*12+1;

//42 for abbrev data sets, 51 for test, 31*12+1 for 2h sets

const int popSize = 100;

const double replacementRate = 0.7;

const double mutationRate = 0.15;

const int generations = 3000000;

const bool usePSO = false; //else use GA

int maxSatellites = 1;

//in a multiple-satellite implementation, this should be at least the length

//of the longest x/y vector

double bestFitness;

particle pBest,lBest;
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int j;

ofstream genfitness;

//genfitness.open("X:\\data\\genfitness.txt");

//genfitness.close(); //clears file contents

//creates a vector of _observ_’s of size _maxObservations_

vector<observ> data(maxObservations);

cout.setf(ios::scientific); //or fixed

srand((int)time(0)); //randomise

vector<organism> pop(popSize);

vector<particle> swarm(popSize);

if (usePSO) {

cout << "Swarm of " << popSize << " created.\n";

for (int i=0;i<popSize;i++) swarm[i].create();

cout << "Swarm initialised.\n";

}

else {

cout << "Organisms created.\n";

for (unsigned int i=0;i<popSize;i++) pop[i].create(maxSatellites);

cout << "Organisms initialised.\n";

}

pair<double,double> result;

if (usePSO) result = keplerian(swarm[0],2454600);

else result = keplerian(pop[0],0,2454600);

cout<<"r: "<<result.first<<endl<<"v: "<<result.second<<endl;

pair<pair<double,double>,double> xyz;

if (usePSO) xyz = polarToXYZ(swarm[0],result);

else xyz = polarToXYZ(pop[0],0,result);

cout<<"x: "<<xyz.first.first<<endl;

cout<<"y: "<<xyz.first.second<<endl;

cout<<"z: "<<xyz.second<<endl;

if (usePSO) {

j = 0;

while (j<generations) { //and error criteria

cout << j+1 << ". ";

if (LOG) {

genfitness.open("X:\\data\\genfitness.txt", ios::app);

genfitness << j+1 << "\t";

genfitness.close();

}

lBest = rankFitnessXYZ(swarm, data.size(), pBest);

if (LOG) {

genfitness.open("X:\\data\\genfitness.txt", ios::app);

genfitness.setf(ios::scientific);

double meanFitness = 0.;

for (unsigned int i=0;i<swarm.size();i++) {

meanFitness += swarm[i].fitness;

}
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meanFitness /= swarm.size();

//this is now the correct value of 1/meanFitness

double stdev = 0.0;

for (unsigned int i=0;i<swarm.size();i++) {

stdev += pow(meanFitness - swarm[i].fitness,2);

}

stdev /= swarm.size();

stdev = sqrt(stdev);

genfitness << meanFitness << "\t" << stdev << "\n";

//file now reads generation[\t]bestFitness[\t]worstFitness[\t]

//time[\t]meanFitness[\t]stdev[\n]

genfitness.close();

}

outputSwarm(swarm);

for (unsigned int i=0;i<swarm.size();i++) {

swarm[i].update(pBest,lBest);

}

//tapered vMAX enforcement

if (taper) {

if (j==5000) for (unsigned int i=0;i<swarm.size();i++) {

swarm[i].newVmax(1.0);

}

else if (j==10000) for (unsigned int i=0;i<swarm.size();i++) {

swarm[i].newVmax(0.75);

}

else if (j==15000) for (unsigned int i=0;i<swarm.size();i++) {

swarm[i].newVmax(0.5);

}

else if (j==20000) for (unsigned int i=0;i<swarm.size();i++) {

swarm[i].newVmax(0.25);

}

else if (j==25000) for (unsigned int i=0;i<swarm.size();i++) {

swarm[i].newVmax(0.1);

}

else if (j==30000) for (unsigned int i=0;i<swarm.size();i++) {

swarm[i].newVmax(0.05);

}

}

j++;

}

}

else for (j=0;j<generations;j++) { //begin GA loop

genfitness.open("X:\\data\\genfitness.txt", ios::app);

cout << j+1 << ". ";

if (LOG) genfitness << j+1 << "\t";

else genfitness << j+1 << ". "; //inserts generation count, e.g., "1. "

genfitness.close();

//get fitness of all organisms by measuring SSE of XYZ coords

bestFitness = rankFitnessXYZ(pop, data.size());

double totalFitness = 0.;

double probability;

double selectRand;

double mutateRand;
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int numSelected = 0;

outputOrganisms(pop);

//evolve: select, crossover, mutate, update, then re-evaluate fitness

//select:

for (unsigned int i=0;i<pop.size();i++) {

totalFitness+=pop[i].fitness;

pop[i].selected = false;

}

do { //new roulette wheel selection method

selectRand = ((double)rand()/32768)*totalFitness;

for (unsigned int i=0;i<pop.size();i++) {

//probability = pop[i].fitness/totalFitness;

if (!pop[i].selected) {

selectRand -= pop[i].fitness;

if (selectRand <= 0) {

pop[i].selected = true;

numSelected++;

totalFitness -= pop[i].fitness;

//exclude this organism from future roulette selections

break;

}

}

}

} while (numSelected < replacementRate*pop.size());

int numToCross = pop.size() - numSelected; //numToCross must be even

//copy selected

vector<organism> popNew;

for (unsigned int i=0;i<pop.size();i++) {

if (pop[i].selected) popNew.push_back(pop[i]);

}

//at this point, popNew contains only selected orgs, not crossed-over ones

//this is where we output to genfitness the stdev and mean of fitness

if (LOG) {

genfitness.open("X:\\data\\genfitness.txt", ios::app);

genfitness.setf(ios::scientific);

double meanFitness = 0.;

for (unsigned int i=0;i<popNew.size();i++) {

meanFitness += popNew[i].fitness;

}

meanFitness /= popNew.size();

//this is now the correct value of 1/meanFitness

double stdev = 0.0;

for (unsigned int i=0;i<popNew.size();i++) {

stdev += pow(meanFitness - popNew[i].fitness,2);

}

stdev /= popNew.size();

stdev = sqrt(stdev);

genfitness << meanFitness << "\t" << stdev << "\t";
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//file now reads generation[\t]bestFitness[\t]worstFitness[\t]

//time[\t]meanFitness[\t]stdev[\t]

genfitness.close();

}

//crossover in popNew:

for (int i=0;i<numToCross/2;i++) {

int t1,t2;

t1 = rand() % numSelected;

//we use numSelected so we’re only crossing over old organisms

t2 = rand() % numSelected;

pair<organism,organism> newOrg = straightCrossover(popNew[t1],popNew[t2]);

popNew.push_back(newOrg.first);

popNew.push_back(newOrg.second);

}

//mutate in popNew:

for (unsigned int i=0;i<popNew.size();i++) {

mutateRand = (double)rand()/32768;

if (mutateRand<mutationRate) mutate(popNew[i]);

}

//here output to genfit the std, mean of fitness of the entire crossed-over pop.

if (LOG) {

genfitness.open("X:\\data\\genfitness.txt", ios::app);

genfitness.setf(ios::scientific);

double meanFitness = 0.;

for (unsigned int i=0;i<popNew.size();i++) {

meanFitness += popNew[i].fitness;

}

meanFitness /= popNew.size();

//this is now the correct value of 1/meanFitness

double stdev = 0.0;

for (unsigned int i=0;i<popNew.size();i++) {

stdev += pow(meanFitness - popNew[i].fitness,2);

}

stdev /= popNew.size();

stdev = sqrt(stdev);

genfitness << meanFitness << "\t" << stdev << endl;

//file now reads generation[\t]bestFitness[\t]worstFitness[\t]time[\t]

//meanFitnessSelected[\t]stdevSelected[\t]meanFitnessAll[\t]stdevAll[\n]

genfitness.close();

}

//update population:

pop = popNew;

} //end loop

//return organism with highest fitness

return 0;

}
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A.2. organism.h

// organism.h

class organism {

public:

organism();

double fitness;

bool selected;

void create(int);

int satellites;

static const unsigned long long mu = 37931187000000000;

//standard G for jupiter (126686534000000000) in m^3/s^2

//test = 330531054456064

//saturn = 37931187000000000

//note that orbital period P = (2*pi)/sqrt(mu)*a^(3/2) (in seconds)

long long a[1];

double e[1],inclin[1],node[1],w[1],m0[1];

};

organism::organism() {

fitness = -1.;

satellites = 0;

}

void organism::create(int maxSize) { //create random organism

satellites = rand() % maxSize + 1;

double period;

for (int i=0;i<satellites;i++) {

a[0] = (((long long)rand()+1)*8000);

//Io: 25000, Himalia: 700000, test: 6000, Atlas: 8000

//a should be on the order of 421,800,000 for Io’s orbit.

//a should be on the order of 11,461,000,000 for Himalia’s orbit.

e[0] = ((double)rand()/32768); //e should be between 0 and 1

inclin[0] = ((double)rand()/32768*2*M_PI);

node[0] = ((double)rand()/32768*2*M_PI);

w[0] = ((double)rand()/32768*2*M_PI);

m0[0] = ((double)rand()/32768*2*M_PI);

}

}

A.3. particle.h

// particle.h

class particle {

public:

double c1, c2; //learning factors

double vMAX; //set vMAX below

double evMAX; //eccentricity maximum velocity

particle();

void create();

double fitness;

static const unsigned long long mu = 37931187000000000;

//standard G for jupiter (126686534000000000) in m^3/s^2

//test = 330531054456064
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//saturn = 37931187000000000

long long a; //a could be unsigned as well

double e, inclin, node, w, m0;

long long aV;

double eV, iV, nV, wV, m0V;

void update(particle, particle);

void newVmax(double);

};

particle::particle() {

vMAX = 1.0;

evMAX = 0.1;

fitness = -1.;

c1 = 2.;

c2 = 2.;

//particle positions

a = 0;

e = 0.;

inclin = 0.;

node = 0.;

w = 0.;

m0 = 0.;

//particle velocities

aV = 0;

eV = 0.;

iV = 0.;

nV = 0.;

wV = 0.;

m0V = 0.;

}

void particle::create() {

a = ((long long)rand()+1)*8000;

e = (double)rand()/32768;

inclin = (double)rand()/32768*2*M_PI;

node = (double)rand()/32768*2*M_PI;

w = (double)rand()/32768*2*M_PI;

m0 = (double)rand()/32768*2*M_PI;

}

void particle::update(particle pBest, particle lBest) {

double delta[8];

delta[0] = pBest.inclin - inclin;

delta[1] = lBest.inclin - inclin;

delta[2] = pBest.node - node;

delta[3] = lBest.node - node;

delta[4] = pBest.w - w;

delta[5] = lBest.w - w;

delta[6] = pBest.m0 - m0;

delta[7] = lBest.m0 - m0;
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for (int i=0;i<8;i++) {

if (delta[i]>M_PI) delta[i] -= 2*M_PI;

if (delta[i]<(-1.*M_PI)) delta[i] += 2*M_PI;

}

//this moves the particles randomly -> one parameter but maybe not another

/*aV += c1*((double)rand()/32768)*((double)(pBest.a - a))

+ c2*((double)rand()/32768)*((double)(lBest.a - a));

eV += c1*((double)rand()/32768)*(pBest.e - e)

+ c2*((double)rand()/32768)*(lBest.e - e);

iV += c1*((double)rand()/32768)*delta[0]

+ c2*((double)rand()/32768)*delta[1];

nV += c1*((double)rand()/32768)*delta[2]

+ c2*((double)rand()/32768)*delta[3];

wV += c1*((double)rand()/32768)*delta[4]

+ c2*((double)rand()/32768)*delta[5];

m0V += c1*((double)rand()/32768)*delta[6]

+ c2*((double)rand()/32768)*delta[7];*/

//this treats the entire vector as one: particles move towards best values

//across all parameters simultaneously

double rand1, rand2;

rand1 = (double)rand()/32768;

rand2 = (double)rand()/32768;

aV += c1*rand1*((double)(pBest.a - a)) + c2*rand2*((double)(lBest.a - a));

eV += c1*rand1*(pBest.e - e) + c2*rand2*(lBest.e - e);

iV += c1*rand1*delta[0] + c2*rand2*delta[1];

nV += c1*rand1*delta[2] + c2*rand2*delta[3];

wV += c1*rand1*delta[4] + c2*rand2*delta[5];

m0V += c1*rand1*delta[6] + c2*rand2*delta[7];

eV = min(eV,(double)evMAX);

eV = max(eV,(double)(evMAX*(-1)));

iV = min(iV,(double)vMAX);

iV = max(iV,(double)(vMAX*(-1)));

nV = min(nV,(double)vMAX);

nV = max(nV,(double)(vMAX*(-1)));

wV = min(wV,(double)vMAX);

wV = max(wV,(double)(vMAX*(-1)));

m0V = min(m0V,(double)vMAX);

m0V = max(m0V,(double)(vMAX*(-1)));

a += aV;

a = max(a,(long long)1);

e += eV;

e = min(e,0.999999);

e = max(e,0.);

inclin += iV;

while (inclin >= 2*M_PI) inclin -= 2*M_PI;

while (inclin < 0) inclin += 2*M_PI;

node += nV;

while (node >= 2*M_PI) node -= 2*M_PI;
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while (node < 0) node += 2*M_PI;

w += wV;

while (w >= 2*M_PI) w -= 2*M_PI;

while (w < 0) w += 2*M_PI;

m0 += m0V;

while (m0 >= 2*M_PI) m0 -= 2*M_PI;

while (m0 < 0) m0 += 2*M_PI;

}

void particle::newVmax(double newV) {

vMAX = newV;

}



APPENDIX B

Source Code: MATLAB Scripts

B.1. ANNz Script

% part2annz.m

function [a b c] = part2annz(file)

%for ANNz

fid = fopen(file, ’rt’);

data = fscanf(fid, ’%f %f %f’, [3 inf]);

fclose(fid);

data = data’;

count = size(data,1);

for i = 1:count

data(i,4) = (data(i,1)-data(i,2))^2;

end;

rmse = 0;

del1 = 0;

del2 = 0;

del3 = 0;

for i = 1:count

rmse = rmse + data(i,4);

if data(i,4) <= .01, del1 = del1 + 1; end;

if data(i,4) <= .04, del2 = del2 + 1; end;

if data(i,4) <= .09, del3 = del3 + 1; end;

end;

rmse = rmse/count;

rmse = sqrt(rmse),

del1 = del1/count,

del2 = del2/count,

del3 = del3/count,

rmsnoise = sqrt(sum(data(:,3).*data(:,3))/count);

errors(row,:) = [rmsnoise rmse del1 del2 del3];

row = row + 1;

close all;

figure(’Position’, [20 540 560 420]);

a = plot(data(:,1),data(:,2),’o’,’MarkerSize’,2);line([0 6],[0 6],’Color’,’r’);

figure(’Position’, [620 60 560 420]);
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b = plot(data(:,1),data(:,3),’o’,’MarkerSize’,2);

figure(’Position’, [20 60 560 420]);

c = plot(data(:,1),abs(data(:,2)-data(:,1)),’o’,’MarkerSize’,2);

B.2. MLP/Netlab Script

% part2mlp.m

act = ’linear’;

nout = 1;

comSize = 5; % committee size

nhidden = 10;

iter = 500;

[x4,t4] = datread(’x:\quasartrain-UGRI.dat’,4,1,37136);

[x4t,t4t] = datread(’x:\quasartest-UGRI.dat’,4,1,9284);

[x5,t5] = datread(’x:\quasartrain-ugriz.dat’,5,1,37136);

[x5t,t5t] = datread(’x:\quasartest-ugriz.dat’,5,1,9284);

[x6,t6] = datread(’x:\quasartrain-ugriz6192.dat’,5,1,4954);

[x6t,t6t] = datread(’x:\quasartest-ugriz6192.dat’,5,1,1238);

[x7,t7] = datread(’x:\quasartrain-UGRIZJH.dat’,7,1,4954);

[x7t,t7t] = datread(’x:\quasartest-UGRIZJH.dat’,7,1,1238);

[x8,t8] = datread(’x:\quasartrain-ugrizjhk.dat’,8,1,4954);

[x8t,t8t] = datread(’x:\quasartest-ugrizjhk.dat’,8,1,1238);

[x9,t9] = datread(’x:\quasartrain-ugrizUGRI.dat’,9,1,37136);

[x9t,t9t] = datread(’x:\quasartest-ugrizUGRI.dat’,9,1,9284);

[x01,t01] = datread(’x:\trainz01.dat’,4,1,10159);

[x01t,t01t] = datread(’x:\testz01.dat’,4,1,2540);

[x12,t12] = datread(’x:\trainz12.dat’,4,1,19166);

[x12t,t12t] = datread(’x:\testz12.dat’,4,1,4792);

[x2,t2] = datread(’x:\trainz2.dat’,4,1,7810);

[x2t,t2t] = datread(’x:\testz2.dat’,4,1,1953);

[x02,t02] = datread(’x:\trainz02.dat’,4,1,29325);

[x02t,t02t] = datread(’x:\testz02.dat’,4,1,7332);

trainx = {x4, x5, x6, x7, x8, x9, x01, x12, x2, x02};

traint = {t4, t5, t6, t7, t8, t9, t01, t12, t2, t02};

testx = {x4t, x5t, x6t, x7t, x8t, x9t, x01t, x12t, x2t, x02t};

testt = {t4t, t5t, t6t, t7t, t8t, t9t, t01t, t12t, t2t, t02t};

clear skip;

skip(10, comSize) = 0;

skipActive = 0;

% if skipActive = 1 but skip()() is all 0s, this retrains the MLPs by iter

% skipActive = 1;

% skip(1,:) = 1;

% skip(2,:) = 1;

% skip(3,:) = 1;

% skip(4,:) = 1;

% skip(5,:) = 1;

% skip(6,:) = 1;

% skip(7,:) = 1;

% skip(8,:) = 1;

% skip(9,:) = 1;
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% skip(10,:) = 1;

if skipActive==1, savemlps=mlps; end;

if skipActive==0, mlps = cell(6,comSize); end;

y = cell(6,comSize);

rms(6,comSize) = 0;

comOutput = cell(6);

comRMS(6) = 0;

meanRMS(6) = 0;

if skipActive==0

for j = 1:size(mlps,2)

mlps{1,j} = mlp(4, nhidden, nout, act);

mlps{2,j} = mlp(5, nhidden, nout, act);

mlps{3,j} = mlp(5, nhidden, nout, act);

mlps{4,j} = mlp(7, nhidden, nout, act);

mlps{5,j} = mlp(8, nhidden, nout, act);

mlps{6,j} = mlp(9, nhidden, nout, act);

mlps{7,j} = mlp(4, nhidden, nout, act);

mlps{8,j} = mlp(4, nhidden, nout, act);

mlps{9,j} = mlp(4, nhidden, nout, act);

mlps{10,j} = mlp(4, nhidden, nout, act);

end;

end;

for i = 1:size(mlps,1)

for j = 1:size(mlps,2)

if skip(i,j)==0

mlps{i,j} = mlptrain(mlps{i,j}, trainx{i}, traint{i}, iter);

end;

y{i,j} = mlpfwd(mlps{i,j}, testx{i});

rms(i,j) = sqrt(mean((y{i,j}-testt{i}).*(y{i,j}-testt{i})));

fprintf(1, ’MLP %d, member %d finished.\n’, i, j);

end;

comOutput{i} = 0;

for j = 1:comSize, comOutput{i} = comOutput{i} + y{i,j}; end;

comOutput{i} = comOutput{i} / comSize;

comRMS(i)=sqrt(mean((comOutput{i}-testt{i}).*(comOutput{i}-testt{i})));

meanRMS(i) = mean(rms(i,1:size(mlps,2)));

fprintf(1, ’Finished with MLP committee %d.\n’, i);

end;

saverms = [rms comRMS’ meanRMS’];

savemlps = mlps;

B.3. RBFN Script

% part2rbf.m

act = ’tps’;

nout = 1;

comSize = 5; % committee size

nhidden = 20;

options = foptions;

options(1) = 25; % display errors/how often?

options(14) = 100; % number of iterations



98 B. SOURCE CODE: MATLAB SCRIPTS

[x4,t4] = datread(’x:\quasartrain-UGRI.dat’,4,1,37136);

[x4t,t4t] = datread(’x:\quasartest-UGRI.dat’,4,1,9284);

[x5,t5] = datread(’x:\quasartrain-ugriz.dat’,5,1,37136);

[x5t,t5t] = datread(’x:\quasartest-ugriz.dat’,5,1,9284);

[x6,t6] = datread(’x:\quasartrain-ugriz6192.dat’,5,1,4954);

[x6t,t6t] = datread(’x:\quasartest-ugriz6192.dat’,5,1,1238);

[x7,t7] = datread(’x:\quasartrain-UGRIZJH.dat’,7,1,4954);

[x7t,t7t] = datread(’x:\quasartest-UGRIZJH.dat’,7,1,1238);

[x8,t8] = datread(’x:\quasartrain-ugrizjhk.dat’,8,1,4954);

[x8t,t8t] = datread(’x:\quasartest-ugrizjhk.dat’,8,1,1238);

[x9,t9] = datread(’x:\quasartrain-ugrizUGRI.dat’,9,1,37136);

[x9t,t9t] = datread(’x:\quasartest-ugrizUGRI.dat’,9,1,9284);

trainx = {x4, x5, x6, x7, x8, x9};

traint = {t4, t5, t6, t7, t8, t9};

testx = {x4t, x5t, x6t, x7t, x8t, x9t};

testt = {t4t, t5t, t6t, t7t, t8t, t9t};

clear skip;

skip(6, comSize) = 0;

skipActive = 0;

skipActive = 1;

skip(1,:) = 1;

skip(2,:) = 1;

skip(3,:) = 1;

skip(4,:) = 1;

skip(5,:) = 1;

skip(6,:) = 1;

if skipActive==1, saverbfs=rbfs; end;

if skipActive==0, rbfs = cell(6,comSize); end;

a = cell(6,comSize);

rms(6,comSize) = 0;

comOutput = cell(6);

comRMS(6) = 0;

meanRMS(6) = 0;

if skipActive==0

for j = 1:size(rbfs,2)

rbfs{1,j} = rbf(4, nhidden, nout, act);

rbfs{2,j} = rbf(5, nhidden, nout, act);

rbfs{3,j} = rbf(5, nhidden, nout, act);

rbfs{4,j} = rbf(7, nhidden, nout, act);

rbfs{5,j} = rbf(8, nhidden, nout, act);

rbfs{6,j} = rbf(9, nhidden, nout, act);

end;

end;

for i = 1:size(rbfs,1)

for j = 1:size(rbfs,2)

if skip(i,j)==0

rbfs{i,j} = rbftrain(rbfs{i,j}, options, trainx{i}, traint{i});

end;
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a{i,j} = rbffwd(rbfs{i,j}, testx{i});

rms(i,j) = sqrt(mean((a{i,j}-testt{i}).*(a{i,j}-testt{i})));

fprintf(1, ’RBF %d, member %d finished.\n’, i, j);

end;

comOutput{i} = 0;

for j = 1:comSize, comOutput{i} = comOutput{i} + a{i,j}; end;

comOutput{i} = comOutput{i} / comSize;

comRMS(i)=sqrt(mean((comOutput{i}-testt{i}).*(comOutput{i}-testt{i})));

meanRMS(i) = mean(rms(i,1:size(rbfs,2)));

fprintf(1, ’Finished with RBF committee %d.\n’, i);

end;

saverms = [rms comRMS’ meanRMS’];

saverbfs = rbfs;
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